Numerical modelling of electromechanical coupling behaviors in HTS coil with implementation of H formulation in FE software

IF 5.6 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Superconductivity Pub Date : 2024-04-18 DOI:10.1016/j.supcon.2024.100097
Huadong Yong , Dong Wei , Yunkai Tang , Donghui Liu
{"title":"Numerical modelling of electromechanical coupling behaviors in HTS coil with implementation of H formulation in FE software","authors":"Huadong Yong ,&nbsp;Dong Wei ,&nbsp;Yunkai Tang ,&nbsp;Donghui Liu","doi":"10.1016/j.supcon.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><p>(Re)Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> (REBCO) coated conductors (CCs) have attracted considerable concern because of their outstanding current carrying capacity in magnetic fields of high strengths. A huge electromagnetic force is generated in the superconducting coil when conducting large currents in strong magnetic field. Thus, management of stress and strain has become a key technical challenge for the stability and safety of superconducting coil during operation. To accurately predict the electro-magnetic and mechanical characteristics of superconducting coil in strong magnetic field, an electromechanical model on the basis of the H-formulation and arbitrary Lagrangian-Eulerian (ALE) method is proposed here with FE software. To verify the proposed model, the simulation outcomes of the coil during magnetization are compared with the experimental outcomes. The coupling effect of magnet at high field strengths is dependent on the position of the coil. To reduce the screening current effect, the overshoot method with plateau is found superior to the traditional overshoot method, and an increase in the stabilization time can decrease the maximum value of stress. Finally, the electromechanical behaviors of single winding coil and two-tapes co-winding coil are compared.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"10 ","pages":"Article 100097"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772830724000140/pdfft?md5=f0be644092e97573b6237099e2f8dee3&pid=1-s2.0-S2772830724000140-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830724000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

(Re)Ba2Cu3O7-x (REBCO) coated conductors (CCs) have attracted considerable concern because of their outstanding current carrying capacity in magnetic fields of high strengths. A huge electromagnetic force is generated in the superconducting coil when conducting large currents in strong magnetic field. Thus, management of stress and strain has become a key technical challenge for the stability and safety of superconducting coil during operation. To accurately predict the electro-magnetic and mechanical characteristics of superconducting coil in strong magnetic field, an electromechanical model on the basis of the H-formulation and arbitrary Lagrangian-Eulerian (ALE) method is proposed here with FE software. To verify the proposed model, the simulation outcomes of the coil during magnetization are compared with the experimental outcomes. The coupling effect of magnet at high field strengths is dependent on the position of the coil. To reduce the screening current effect, the overshoot method with plateau is found superior to the traditional overshoot method, and an increase in the stabilization time can decrease the maximum value of stress. Finally, the electromechanical behaviors of single winding coil and two-tapes co-winding coil are compared.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用有限元软件中的 H 公式对 HTS 线圈中的机电耦合行为进行数值建模
(Re)Ba2Cu3O7-x(REBCO)涂层导体(CC)因其在高强度磁场中的出色载流能力而备受关注。在强磁场中传导大电流时,超导线圈中会产生巨大的电磁力。因此,应力和应变的管理已成为超导线圈在运行过程中保持稳定和安全的关键技术挑战。为了准确预测超导线圈在强磁场中的电磁和机械特性,本文在 H 公式和任意拉格朗日-欧勒(ALE)方法的基础上,利用 FE 软件提出了一个机电模型。为了验证所提出的模型,将线圈在磁化过程中的模拟结果与实验结果进行了比较。高磁场强度下的磁体耦合效应取决于线圈的位置。为了减少屏蔽电流效应,发现带高原的过冲方法优于传统的过冲方法,而且增加稳定时间可以降低应力的最大值。最后,比较了单绕组线圈和双带共绕组线圈的机电行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
期刊最新文献
Design and initial test results of a space-bound flux pump to energize the Hēki mission’s superconducting magnet Recent progress in high-temperature superconducting undulators Thickness dependence of the second magnetization peak effect in Ba0.6K0.4Fe2As2 single crystals Development and construction of magnet system for world’s first full high temperature superconducting tokamak The Chinese magneto-biased superconducting current limiter has achieved long-term grid-connected demonstration, withstanding transmission line fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1