Kyunghoon Lee , Yunho Kim , Eonhyoung Ahn , Jong Ik Kwon , Hyeonjong Ma , Jae Hong Jang , Shi Li , Hyo Cheol Lee , Gwang Heon Lee , Soyeon Lee , Kiwook Kim , Nak Jun Sung , Dongeun Kim , Myoung Hoon Song , Moon Kee Choi , Jiwoong Yang
{"title":"Highly efficient pure red light-emitting diodes through surface bromination of CsPbI3 perovskite nanocrystals for skin-attachable displays","authors":"Kyunghoon Lee , Yunho Kim , Eonhyoung Ahn , Jong Ik Kwon , Hyeonjong Ma , Jae Hong Jang , Shi Li , Hyo Cheol Lee , Gwang Heon Lee , Soyeon Lee , Kiwook Kim , Nak Jun Sung , Dongeun Kim , Myoung Hoon Song , Moon Kee Choi , Jiwoong Yang","doi":"10.1016/j.mattod.2024.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Metal halide perovskites, known for their outstanding optical properties such as high photoluminescence quantum yield, exceptional color purity, and tunable bandgap, have emerged as promising semiconductor materials for next-generation display technologies. Nonetheless, producing pure red emissions from ∼ 10 nm-sized CsPbI<sub>3</sub> perovskite nanocrystals (PeNCs) remains a significant challenge for perovskite light-emitting didoes (PeLEDs). Here, we present the facile surface bromination strategy of CsPbI<sub>3</sub> PeNCs for pure red PeLEDs. The mild post-ligand treatment on CsPbI<sub>3</sub> PeNCs produces surface-brominated PeNCs, denoted as CsPbI<sub>3</sub>:Br, while preserving the original CsPbI<sub>3</sub> crystal structure intact. The resulting CsPbI<sub>3</sub>:Br PeNCs exhibit bright pure red luminescence and significant improvements in electrical properties. The PeLEDs, fabricated with these PeNCs, achieve a remarkable external quantum efficiency (EQE) of 19.8 %, comparable to those of the best reported pure red PeLEDs. Finally, we have showcased the application of these PeLEDs as skin-attachable PeLEDs, showing stable operations under various mechanical deformations. This study not only provides a straightforward method for producing pure red PeNCs, but also highlights their potential in wearable electronic applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 2-10"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites, known for their outstanding optical properties such as high photoluminescence quantum yield, exceptional color purity, and tunable bandgap, have emerged as promising semiconductor materials for next-generation display technologies. Nonetheless, producing pure red emissions from ∼ 10 nm-sized CsPbI3 perovskite nanocrystals (PeNCs) remains a significant challenge for perovskite light-emitting didoes (PeLEDs). Here, we present the facile surface bromination strategy of CsPbI3 PeNCs for pure red PeLEDs. The mild post-ligand treatment on CsPbI3 PeNCs produces surface-brominated PeNCs, denoted as CsPbI3:Br, while preserving the original CsPbI3 crystal structure intact. The resulting CsPbI3:Br PeNCs exhibit bright pure red luminescence and significant improvements in electrical properties. The PeLEDs, fabricated with these PeNCs, achieve a remarkable external quantum efficiency (EQE) of 19.8 %, comparable to those of the best reported pure red PeLEDs. Finally, we have showcased the application of these PeLEDs as skin-attachable PeLEDs, showing stable operations under various mechanical deformations. This study not only provides a straightforward method for producing pure red PeNCs, but also highlights their potential in wearable electronic applications.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.