Zifan Pei , Nan Jiang , Fei Gong , Weihao Yang , Jiachen Xu , Bin Yu , Nailin Yang , Jie Wu , Huali Lei , Shumin Sun , Longxiao Li , Zhicheng Liu , Caifang Ni , Liang Cheng
{"title":"A metal anion strategy to induce pyroptosis combined with STING activation to synergistically amplify anti-tumor immunity","authors":"Zifan Pei , Nan Jiang , Fei Gong , Weihao Yang , Jiachen Xu , Bin Yu , Nailin Yang , Jie Wu , Huali Lei , Shumin Sun , Longxiao Li , Zhicheng Liu , Caifang Ni , Liang Cheng","doi":"10.1016/j.mattod.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>Growing evidence has demonstrated the positive role of bioactive metal ions in enhancing pyroptosis-mediated cancer immunotherapy. However, further amplification of the sustained immune response remains challenging. Herein, by selecting from typical metal anions, we confirmed the significant cytotoxicity and pyroptosis induction potency of vanadate anions, owing to the inhibition of ATPases and disruption of intracellular ion homeostasis. Then, PEGylated bimetallic manganese vanadate nanoparticles (MnVO<sub>x</sub>) were synthesized for stimulator of interferon genes (STING) pathway-boosted pyroptosis therapy. The vanadate produced from MnVO<sub>x</sub> degradation inhibited membrane ATPases and induced potassium efflux and calcium overload, resulting in inflammasome activation, mitochondrial damage, and endoplasmic reticulum stress, as well as subsequent robust pyroptotic cell death. The released manganese ions stimulated STING pathway through dendritic cells maturation and type I interferon secretion. This dual strategy triggered strong anti-tumor immunity and promoted immune cell infiltration into the tumor, which further defeated distant tumors in combination with immune checkpoint blockade (ICB) therapy. Moreover, by dispersing MnVO<sub>x</sub> with lipiodol for interventional transarterial embolization (TAE) therapy, an enhanced therapeutic efficacy was achieved in orthotopic rabbit liver cancer compared to that of lipiodol alone. Our work highlights the biological effect of metal anions in inducing pyroptosis, as well as the synergistic immunotherapy involving pyroptosis induction and STING activation.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"80 ","pages":"Pages 23-39"},"PeriodicalIF":21.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001524","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Growing evidence has demonstrated the positive role of bioactive metal ions in enhancing pyroptosis-mediated cancer immunotherapy. However, further amplification of the sustained immune response remains challenging. Herein, by selecting from typical metal anions, we confirmed the significant cytotoxicity and pyroptosis induction potency of vanadate anions, owing to the inhibition of ATPases and disruption of intracellular ion homeostasis. Then, PEGylated bimetallic manganese vanadate nanoparticles (MnVOx) were synthesized for stimulator of interferon genes (STING) pathway-boosted pyroptosis therapy. The vanadate produced from MnVOx degradation inhibited membrane ATPases and induced potassium efflux and calcium overload, resulting in inflammasome activation, mitochondrial damage, and endoplasmic reticulum stress, as well as subsequent robust pyroptotic cell death. The released manganese ions stimulated STING pathway through dendritic cells maturation and type I interferon secretion. This dual strategy triggered strong anti-tumor immunity and promoted immune cell infiltration into the tumor, which further defeated distant tumors in combination with immune checkpoint blockade (ICB) therapy. Moreover, by dispersing MnVOx with lipiodol for interventional transarterial embolization (TAE) therapy, an enhanced therapeutic efficacy was achieved in orthotopic rabbit liver cancer compared to that of lipiodol alone. Our work highlights the biological effect of metal anions in inducing pyroptosis, as well as the synergistic immunotherapy involving pyroptosis induction and STING activation.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.