Prediction of Rice Production to Support Food Security in Bogor Regency using Linear Regression and Support Vector Machine (SVM)

Ani Apriani, N. Carsono, Mas Dadang Enjat Munajat
{"title":"Prediction of Rice Production to Support Food Security in Bogor Regency using Linear Regression and Support Vector Machine (SVM)","authors":"Ani Apriani, N. Carsono, Mas Dadang Enjat Munajat","doi":"10.30736/jt.v16i1.1192","DOIUrl":null,"url":null,"abstract":"A prediction is an estimation of something that has not yet occurred. Its purpose is to minimize uncertainty and reduce errors in planning. Bogor Regency, with the largest population in West Java, requires a substantial amount of food. Rice production must meet the consumption needs of the population. To anticipate potential rice shortages, effective planning, and reduced dependence on rice imports, research is needed to predict rice production. This study aims to predict rice production using Linear Regression and Support Vector Machine (SVM) algorithms. Secondary data from the Department of Food Crops and Horticulture, and the Central Statistics Agency (BPS) of Bogor Regency were utilized. Results show that the Linear Regression method outperformed SVM, with MSE 236202.323, RMSE 486.007, MAE 388.712, and R2 1.000. In contrast, SVM yielded MSE 1461472466.751, RMSE 38229.2.10, MAE 303333.535, and R2 -0.065. In conclusion, the prediction using Linear Regression demonstrated better accuracy than SVM. \nKeywords: Prediction, Algorithm, SVM. Linear Regression.","PeriodicalId":513371,"journal":{"name":"Jurnal Teknika","volume":"193 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30736/jt.v16i1.1192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A prediction is an estimation of something that has not yet occurred. Its purpose is to minimize uncertainty and reduce errors in planning. Bogor Regency, with the largest population in West Java, requires a substantial amount of food. Rice production must meet the consumption needs of the population. To anticipate potential rice shortages, effective planning, and reduced dependence on rice imports, research is needed to predict rice production. This study aims to predict rice production using Linear Regression and Support Vector Machine (SVM) algorithms. Secondary data from the Department of Food Crops and Horticulture, and the Central Statistics Agency (BPS) of Bogor Regency were utilized. Results show that the Linear Regression method outperformed SVM, with MSE 236202.323, RMSE 486.007, MAE 388.712, and R2 1.000. In contrast, SVM yielded MSE 1461472466.751, RMSE 38229.2.10, MAE 303333.535, and R2 -0.065. In conclusion, the prediction using Linear Regression demonstrated better accuracy than SVM. Keywords: Prediction, Algorithm, SVM. Linear Regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用线性回归和支持向量机 (SVM) 预测茂物地区的水稻产量以支持粮食安全
预测是对尚未发生的事情的估计。其目的是将不确定性降到最低,减少规划中的误差。茂物地区是西爪哇人口最多的地区,需要大量的粮食。大米生产必须满足人口的消费需求。为了预测可能出现的大米短缺,进行有效规划,减少对大米进口的依赖,需要对大米产量进行预测研究。本研究旨在使用线性回归和支持向量机 (SVM) 算法预测稻米产量。研究利用了茂物地区粮食作物和园艺部以及中央统计局(BPS)的二手数据。结果显示,线性回归法的 MSE 为 236202.323,RMSE 为 486.007,MAE 为 388.712,R2 为 1.000,优于 SVM。相比之下,SVM 的 MSE 为 1461472466.751,RMSE 为 38229.2.10,MAE 为 303333.535,R2 为 -0.065。总之,使用线性回归进行预测的准确性优于 SVM。关键词预测 算法 SVM线性回归
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pencegahan tunting sejak Dini : Inovasi Aplikasi Gizi Ibu Hamil Berbasis Android (Study Kasus Desa Ellak Daya Kabupaten Sumenep) Perancangan UI/UX Sistem Informasi Penjualan Pada PT Adirahma Harapan Jaya Menggunakan Metode Design Thinking Prediction of Rice Production to Support Food Security in Bogor Regency using Linear Regression and Support Vector Machine (SVM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1