Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data

Chananchida Sang-aram, Robin Browaeys, Ruth Seurinck, Yvan Saeys
{"title":"Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data","authors":"Chananchida Sang-aram, Robin Browaeys, Ruth Seurinck, Yvan Saeys","doi":"arxiv-2404.16358","DOIUrl":null,"url":null,"abstract":"Ligand-receptor interactions constitute a fundamental mechanism of cell-cell\ncommunication and signaling. NicheNet is a well-established computational tool\nthat infers ligand-receptor interactions that potentially regulate gene\nexpression changes in receiver cell populations. Whereas the original\npublication delves into the algorithm and validation, this paper describes a\nbest practices workflow cultivated over four years of experience and user\nfeedback. Starting from the input single-cell expression matrix, we describe a\n\"sender-agnostic\" approach which considers ligands from the entire\nmicroenvironment, and a \"sender-focused\" approach which only considers ligands\nfrom cell populations of interest. As output, users will obtain a list of\nprioritized ligands and their potential target genes, along with multiple\nvisualizations. In NicheNet v2, we have updated the data sources and\nimplemented a downstream procedure for prioritizing cell-type-specific\nligand-receptor pairs. Although a standard NicheNet analysis takes less than 10\nminutes to run, users often invest additional time in making decisions about\nthe approach and parameters that best suit their biological question. This\npaper serves to aid in this decision-making process by describing the most\nappropriate workflow for common experimental designs like case-control and cell\ndifferentiation studies. Finally, in addition to the step-by-step description\nof the code, we also provide wrapper functions that enable the analysis to be\nrun in one line of code, thus tailoring the workflow to users at all levels of\ncomputational proficiency.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a "sender-agnostic" approach which considers ligands from the entire microenvironment, and a "sender-focused" approach which only considers ligands from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. In NicheNet v2, we have updated the data sources and implemented a downstream procedure for prioritizing cell-type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes less than 10 minutes to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过转录组学数据推断活性配体,利用 NicheNet 揭开细胞间通讯的神秘面纱
配体与受体之间的相互作用构成了细胞间通讯和信号传递的基本机制。NicheNet 是一种行之有效的计算工具,它能推断配体与受体之间的相互作用,这种相互作用可能会调节接收细胞群中基因表达的变化。原始出版物对算法和验证进行了深入探讨,而本文则介绍了经过四年的经验积累和用户反馈而形成的最佳实践工作流程。从输入的单细胞表达矩阵开始,我们描述了一种 "发送者无关 "的方法(考虑整个微环境中的配体)和一种 "发送者集中 "的方法(只考虑感兴趣的细胞群中的配体)。作为输出,用户将获得优先配体及其潜在靶基因的列表,以及多种可视化效果。在 NicheNet v2 中,我们更新了数据源,并实施了一个下游程序,对细胞类型特异性配体-受体对进行优先排序。尽管运行一次标准的 NicheNet 分析不超过 10 分钟,但用户往往需要投入更多的时间来决定最适合其生物学问题的方法和参数。本文介绍了最适合病例对照和细胞分化研究等常见实验设计的工作流程,有助于用户做出决策。最后,除了逐步描述代码外,我们还提供了封装函数,使分析只需一行代码就能完成,从而使工作流程适合各种计算水平的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1