Loss-based prior for the degrees of freedom of the Wishart distribution

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2024-04-10 DOI:10.1016/j.ecosta.2024.04.001
Luca Rossini, Cristiano Villa, Sotiris Prevenas, Rachel McCrea
{"title":"Loss-based prior for the degrees of freedom of the Wishart distribution","authors":"Luca Rossini, Cristiano Villa, Sotiris Prevenas, Rachel McCrea","doi":"10.1016/j.ecosta.2024.04.001","DOIUrl":null,"url":null,"abstract":"Motivated by the proliferation of extensive macroeconomic and health datasets necessitating accurate forecasts, a novel approach is introduced to address Vector Autoregressive (VAR) models. This approach employs the global-local shrinkage-Wishart prior. Unlike conventional VAR models, where degrees of freedom are predetermined to be equivalent to the size of the variable plus one or equal to zero, the proposed method integrates a hyperprior for the degrees of freedom to account for the uncertainty in the parameter values. Specifically, a loss-based prior is derived to leverage information regarding the data-inherent degrees of freedom. The efficacy of the proposed prior is demonstrated in a multivariate setting both for forecasting macroeconomic data, and Dengue infection data.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2024.04.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the proliferation of extensive macroeconomic and health datasets necessitating accurate forecasts, a novel approach is introduced to address Vector Autoregressive (VAR) models. This approach employs the global-local shrinkage-Wishart prior. Unlike conventional VAR models, where degrees of freedom are predetermined to be equivalent to the size of the variable plus one or equal to zero, the proposed method integrates a hyperprior for the degrees of freedom to account for the uncertainty in the parameter values. Specifically, a loss-based prior is derived to leverage information regarding the data-inherent degrees of freedom. The efficacy of the proposed prior is demonstrated in a multivariate setting both for forecasting macroeconomic data, and Dengue infection data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wishart 分布自由度的损失先验
广泛的宏观经济和健康数据集的激增需要准确的预测,在此背景下,我们引入了一种新方法来处理向量自回归模型(VAR)。这种方法采用了全局-局部收缩-威沙特先验。传统的 VAR 模型预先确定自由度等于变量大小加一或等于零,与此不同的是,所提出的方法为自由度整合了一个超先验,以考虑参数值的不确定性。具体来说,基于损失的先验值可以利用数据固有自由度的相关信息。在预测宏观经济数据和登革热感染数据的多变量设置中,演示了所提出的先验的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1