Inference in mixed causal and noncausal models with generalized Student’s t-distributions

IF 2.5 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2025-01-01 DOI:10.1016/j.ecosta.2021.11.007
Francesco Giancaterini, Alain Hecq
{"title":"Inference in mixed causal and noncausal models with generalized Student’s t-distributions","authors":"Francesco Giancaterini,&nbsp;Alain Hecq","doi":"10.1016/j.ecosta.2021.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>The properties of Maximum Likelihood estimator in mixed causal and noncausal models with a generalized Student’s <span><math><mi>t</mi></math></span> error process are reviewed. Several known existing methods are typically not applicable in the heavy-tailed framework. To this end, a new approach to make inference on causal and noncausal parameters in finite sample sizes is proposed. It exploits the empirical variance of the generalized Student’s <span><math><mi>t</mi></math></span>, without the existence of population variance. Monte Carlo simulations show a good performance of the new variance construction for fat tail series. Finally, different existing approaches are compared using three empirical applications: the variation of daily COVID-19 deaths in Belgium, the monthly wheat prices, and the monthly inflation rate in Brazil.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 1-12"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of Maximum Likelihood estimator in mixed causal and noncausal models with a generalized Student’s t error process are reviewed. Several known existing methods are typically not applicable in the heavy-tailed framework. To this end, a new approach to make inference on causal and noncausal parameters in finite sample sizes is proposed. It exploits the empirical variance of the generalized Student’s t, without the existence of population variance. Monte Carlo simulations show a good performance of the new variance construction for fat tail series. Finally, different existing approaches are compared using three empirical applications: the variation of daily COVID-19 deaths in Belgium, the monthly wheat prices, and the monthly inflation rate in Brazil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义学生t分布的混合因果和非因果模型的推理
讨论了具有广义Student 's t误差过程的混合因果和非因果模型的极大似然估计量的性质。一些已知的现有方法通常不适用于重尾框架。为此,提出了一种在有限样本量下对因果参数和非因果参数进行推理的新方法。它利用广义学生t的经验方差,而不存在总体方差。蒙特卡罗仿真结果表明,该方法对胖尾序列的方差构造具有良好的性能。最后,通过三个实证应用比较了不同的现有方法:比利时每日COVID-19死亡人数的变化、月度小麦价格和巴西的月度通货膨胀率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Editorial Board The benefits of returns and options in the estimation of GARCH models. A Heston-Nandi GARCH insight Approximation of BSDE with hidden forward equation and unknown volatility GMM Model Averaging Using Higher Order Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1