{"title":"I-FENN for thermoelasticity based on physics-informed temporal convolutional network (PI-TCN)","authors":"Diab W. Abueidda, Mostafa E. Mobasher","doi":"10.1007/s00466-024-02475-3","DOIUrl":null,"url":null,"abstract":"<p>Most currently available methods for modeling multiphysics, including thermoelasticity, using machine learning approaches, are focused on solving complete multiphysics problems using data-driven or physics-informed multi-layer perceptron (MLP) networks. Such models rely on incremental step-wise training of the MLPs, and lead to elevated computational expense; they also lack the rigor of existing numerical methods like the finite element method. We propose an integrated finite element neural network (I-FENN) framework to expedite the solution of coupled transient thermoelasticity. A novel physics-informed temporal convolutional network (PI-TCN) is developed and embedded within the finite element framework to leverage the fast inference of neural networks (NNs). The PI-TCN model captures some of the fields in the multiphysics problem; then, the network output is used to compute the other fields of interest using the finite element method. We establish a framework that computationally decouples the energy equation from the linear momentum equation. We first develop a PI-TCN model to predict the spatiotemporal evolution of the temperature field across the simulation time based on the energy equation and strain data. The PI-TCN model is integrated into the finite element framework, where the PI-TCN output (temperature) is used to introduce the temperature effect to the linear momentum equation. The finite element problem is solved using the implicit Euler time discretization scheme, resulting in a computational cost comparable to that of a weakly-coupled thermoelasticity problem but with the ability to solve fully-coupled problems. Finally, we demonstrate I-FENN’s computational efficiency and generalization capability in thermoelasticity through several numerical examples.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02475-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Most currently available methods for modeling multiphysics, including thermoelasticity, using machine learning approaches, are focused on solving complete multiphysics problems using data-driven or physics-informed multi-layer perceptron (MLP) networks. Such models rely on incremental step-wise training of the MLPs, and lead to elevated computational expense; they also lack the rigor of existing numerical methods like the finite element method. We propose an integrated finite element neural network (I-FENN) framework to expedite the solution of coupled transient thermoelasticity. A novel physics-informed temporal convolutional network (PI-TCN) is developed and embedded within the finite element framework to leverage the fast inference of neural networks (NNs). The PI-TCN model captures some of the fields in the multiphysics problem; then, the network output is used to compute the other fields of interest using the finite element method. We establish a framework that computationally decouples the energy equation from the linear momentum equation. We first develop a PI-TCN model to predict the spatiotemporal evolution of the temperature field across the simulation time based on the energy equation and strain data. The PI-TCN model is integrated into the finite element framework, where the PI-TCN output (temperature) is used to introduce the temperature effect to the linear momentum equation. The finite element problem is solved using the implicit Euler time discretization scheme, resulting in a computational cost comparable to that of a weakly-coupled thermoelasticity problem but with the ability to solve fully-coupled problems. Finally, we demonstrate I-FENN’s computational efficiency and generalization capability in thermoelasticity through several numerical examples.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.