Jiangyong Qu, Wanqi Yang, Xindong Teng, Li Xu, Dachuan Zhang, Zhikai Xing, Shuang Wang, Xiumei Liu, Lijun Wang, Xumin Wang
{"title":"Gene characterization and phylogenetic analysis of four mitochondrial genomes in Caenogastropoda","authors":"Jiangyong Qu, Wanqi Yang, Xindong Teng, Li Xu, Dachuan Zhang, Zhikai Xing, Shuang Wang, Xiumei Liu, Lijun Wang, Xumin Wang","doi":"10.1007/s13131-023-2258-7","DOIUrl":null,"url":null,"abstract":"<p>Caenogastropoda is a highly diverse group, containing ∼60% of all existing gastropods. Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value. Owing to the increase in relevant phylogenetic studies, our understanding of between species relatedness in Caenogastropoda has improved. However, the biodiversity, taxonomic status, and phylogenetic relationships of this group remain unclear. In the present study, we performed next-generation sequencing of four complete mitochondrial genomes from three families (Buccinidae, Columbellidae, and Cypraeidae) and the four mitogenomes were classical circular structures, with a length of 16 177 bp in <i>Volutharpa ampullacea</i>, 16 244 bp in <i>Mitrella albuginosa</i>, 16 926 bp in <i>Mauritia arabica asiatica</i> and 15 422 bp in <i>Erronea errones</i>. Base composition analysis indicated that whole sequences were biased toward A and T. Then compared them with 171 complete mitochondrial genomes of Caenogastropoda. The phylogenetic relationship of Caenogastropoda derived from Maximum Likelihood (ML) and Bayesian Inference (BI) trees constructed based on CDS sequences was consistent with the results of traditional morphological analysis, with all three families showing close relationships. This study supported Caenogastropoda at the molecular level as a separate clade of Mollusca. According to our divergence time estimations, Caenogastropoda was formed during the middle Triassic period (∼247.2–237 Ma). Our novel mitochondrial genomes provide evidence for the speciation of Caenogastropoda in addition to elucidating the mitochondrial genomic evolution of this subclass.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2258-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Caenogastropoda is a highly diverse group, containing ∼60% of all existing gastropods. Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value. Owing to the increase in relevant phylogenetic studies, our understanding of between species relatedness in Caenogastropoda has improved. However, the biodiversity, taxonomic status, and phylogenetic relationships of this group remain unclear. In the present study, we performed next-generation sequencing of four complete mitochondrial genomes from three families (Buccinidae, Columbellidae, and Cypraeidae) and the four mitogenomes were classical circular structures, with a length of 16 177 bp in Volutharpa ampullacea, 16 244 bp in Mitrella albuginosa, 16 926 bp in Mauritia arabica asiatica and 15 422 bp in Erronea errones. Base composition analysis indicated that whole sequences were biased toward A and T. Then compared them with 171 complete mitochondrial genomes of Caenogastropoda. The phylogenetic relationship of Caenogastropoda derived from Maximum Likelihood (ML) and Bayesian Inference (BI) trees constructed based on CDS sequences was consistent with the results of traditional morphological analysis, with all three families showing close relationships. This study supported Caenogastropoda at the molecular level as a separate clade of Mollusca. According to our divergence time estimations, Caenogastropoda was formed during the middle Triassic period (∼247.2–237 Ma). Our novel mitochondrial genomes provide evidence for the speciation of Caenogastropoda in addition to elucidating the mitochondrial genomic evolution of this subclass.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.