Neural Slicer for Multi-Axis 3D Printing

Tao Liu, Tianyu Zhang, Yongxue Chen, Yuming Huang, Charlie C. L. Wang
{"title":"Neural Slicer for Multi-Axis 3D Printing","authors":"Tao Liu, Tianyu Zhang, Yongxue Chen, Yuming Huang, Charlie C. L. Wang","doi":"arxiv-2404.15061","DOIUrl":null,"url":null,"abstract":"We introduce a novel neural network-based computational pipeline as a\nrepresentation-agnostic slicer for multi-axis 3D printing. This advanced slicer\ncan work on models with diverse representations and intricate topology. The\napproach involves employing neural networks to establish a deformation mapping,\ndefining a scalar field in the space surrounding an input model. Isosurfaces\nare subsequently extracted from this field to generate curved layers for 3D\nprinting. Creating a differentiable pipeline enables us to optimize the mapping\nthrough loss functions directly defined on the field gradients as the local\nprinting directions. New loss functions have been introduced to meet the\nmanufacturing objectives of support-free and strength reinforcement. Our new\ncomputation pipeline relies less on the initial values of the field and can\ngenerate slicing results with significantly improved performance.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel neural network-based computational pipeline as a representation-agnostic slicer for multi-axis 3D printing. This advanced slicer can work on models with diverse representations and intricate topology. The approach involves employing neural networks to establish a deformation mapping, defining a scalar field in the space surrounding an input model. Isosurfaces are subsequently extracted from this field to generate curved layers for 3D printing. Creating a differentiable pipeline enables us to optimize the mapping through loss functions directly defined on the field gradients as the local printing directions. New loss functions have been introduced to meet the manufacturing objectives of support-free and strength reinforcement. Our new computation pipeline relies less on the initial values of the field and can generate slicing results with significantly improved performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多轴三维打印的神经切片机
我们介绍了一种基于神经网络的新型计算管道,作为多轴三维打印的表征无关切片机。这种先进的切片机可以处理具有不同表现形式和复杂拓扑结构的模型。该方法采用神经网络建立变形映射,在输入模型周围空间定义标量场。然后从该场中提取等值面,生成用于 3D 打印的曲面层。创建可微分管道使我们能够通过直接定义在作为局部打印方向的场梯度上的损失函数来优化映射。我们引入了新的损耗函数,以实现无支撑和强度增强的制造目标。我们的新计算管道对场的初始值依赖较少,并能生成性能显著提高的切片结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1