Madhulika Singh, Pooja Asthana, Manoj K. Rai, Uma Jaiswal
{"title":"Somatic embryogenesis and plant regeneration from suspension cultures of Sapindus trifoliatus","authors":"Madhulika Singh, Pooja Asthana, Manoj K. Rai, Uma Jaiswal","doi":"10.1007/s11240-024-02760-2","DOIUrl":null,"url":null,"abstract":"<p>A procedure for plant regeneration from cell suspension cultures through somatic embryogenesis is described for <i>Sapindus trifoliatus</i>, a commercially and medicinally important tree. Callus was induced from leaf disc on agar-solidified MS medium with 5.0 mg l<sup>−1</sup> 2, 4-D and 0.01 mg l<sup>−1</sup> Kin. Embryogenic cell suspension cultures were established by placing leaf-derived friable calli in PGR-free full-strength MS liquid medium with 3% sucrose. The growth of cell suspension culture was significantly affected by the strength of the MS mineral solution and L-glutamine. Plating of the suspension on semisolid MS medium resulted in the formation of globular structures. These embryogenic globular structures differentiated into secondary globular structures or somatic embryos on a semisolid MS medium. The differentiation of globular structures and different stages of somatic embryos (from globular to cotyledonary) was enhanced by the addition of 200 mg l<sup>−1</sup> L-glutamine in the medium. Sucrose at relatively high concentrations (5%) or ABA (0.01 mg l<sup>−1</sup>) promoted somatic embryo maturation. The highest percentage (about 90%) of germination of somatic embryo and plantlet conversion was achieved on a half-strength MS medium containing 2% sucrose. The plants were hardened and established in soil with a 90% survival rate</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"27 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02760-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A procedure for plant regeneration from cell suspension cultures through somatic embryogenesis is described for Sapindus trifoliatus, a commercially and medicinally important tree. Callus was induced from leaf disc on agar-solidified MS medium with 5.0 mg l−1 2, 4-D and 0.01 mg l−1 Kin. Embryogenic cell suspension cultures were established by placing leaf-derived friable calli in PGR-free full-strength MS liquid medium with 3% sucrose. The growth of cell suspension culture was significantly affected by the strength of the MS mineral solution and L-glutamine. Plating of the suspension on semisolid MS medium resulted in the formation of globular structures. These embryogenic globular structures differentiated into secondary globular structures or somatic embryos on a semisolid MS medium. The differentiation of globular structures and different stages of somatic embryos (from globular to cotyledonary) was enhanced by the addition of 200 mg l−1 L-glutamine in the medium. Sucrose at relatively high concentrations (5%) or ABA (0.01 mg l−1) promoted somatic embryo maturation. The highest percentage (about 90%) of germination of somatic embryo and plantlet conversion was achieved on a half-strength MS medium containing 2% sucrose. The plants were hardened and established in soil with a 90% survival rate
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.