Sale Sani, Mahmoud Ali Khalaf Abushattal, Sreeramanan Subramaniam, Nor Hasnida Hassan, Mohamad Fadhli Mad’ Atari
{"title":"Enhancing bioactive compounds in hairy roots culture of precious medicinal plant Eurycoma longifolia Jack. through LED elicitation","authors":"Sale Sani, Mahmoud Ali Khalaf Abushattal, Sreeramanan Subramaniam, Nor Hasnida Hassan, Mohamad Fadhli Mad’ Atari","doi":"10.1007/s11240-024-02856-9","DOIUrl":null,"url":null,"abstract":"<p><i>Eurycoma longifolia</i> Jack. is a commercially valuable medicinal plant with clinically proven anti-cancer and aphrodisiac properties. To ensure the sustainability of the production of <i>E. longifolia</i> products on a commercial scale, hairy roots (HR) were engineered. In this study, we used light-emitting diodes (LEDs) as elicitation agents to enhance the synthesis of three (3) anticancer compounds (eurycomanone, 9-hydroxycanthin-6-one and 9-methoxycanthin-6-one). HR cultures were cultured for 12 weeks under four different LED treatments, including blue light (100%), red light (100%) and a combination of blue and red light (60%: 40%). In addition, a white LED was used as a control. The effects of the treatments on growth, synthesis and anti-cancer properties were determined. The results show a significant difference (p < 0.05) between the treatments. The combination of blue and red LED produced the highest dried biomass of 0.316, 0.391 and 0.459 g/50mL at weeks 6, 8 and 10, respectively, which is 2.2, 1.7 and 1.5 times that of the white LED. In addition, the red LED produced the highest level of eurycomanone at the 8th and 12th week of culture, the combination of blue and red LED produced the highest level of 9-hydroxycanthin-6-one at the 8th and 12th week of culture, and 9-methoxycanthin-6-one at the 4th and 8th week of culture. The MTT assay showed significant activity of the crude extracts from all treatments against MCF-7 cancer cells. These results indicate that LED excitation is a promising technique for the production of anticancer agents from HR cultures of <i>E. longifolia</i>.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"129 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02856-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eurycoma longifolia Jack. is a commercially valuable medicinal plant with clinically proven anti-cancer and aphrodisiac properties. To ensure the sustainability of the production of E. longifolia products on a commercial scale, hairy roots (HR) were engineered. In this study, we used light-emitting diodes (LEDs) as elicitation agents to enhance the synthesis of three (3) anticancer compounds (eurycomanone, 9-hydroxycanthin-6-one and 9-methoxycanthin-6-one). HR cultures were cultured for 12 weeks under four different LED treatments, including blue light (100%), red light (100%) and a combination of blue and red light (60%: 40%). In addition, a white LED was used as a control. The effects of the treatments on growth, synthesis and anti-cancer properties were determined. The results show a significant difference (p < 0.05) between the treatments. The combination of blue and red LED produced the highest dried biomass of 0.316, 0.391 and 0.459 g/50mL at weeks 6, 8 and 10, respectively, which is 2.2, 1.7 and 1.5 times that of the white LED. In addition, the red LED produced the highest level of eurycomanone at the 8th and 12th week of culture, the combination of blue and red LED produced the highest level of 9-hydroxycanthin-6-one at the 8th and 12th week of culture, and 9-methoxycanthin-6-one at the 4th and 8th week of culture. The MTT assay showed significant activity of the crude extracts from all treatments against MCF-7 cancer cells. These results indicate that LED excitation is a promising technique for the production of anticancer agents from HR cultures of E. longifolia.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.