Effect of Cathode Surface Area on the Electrodeposition Rate, Composition, and Microhardness of Co–W Coatings Deposited from a Citrate Bath

A. V. Gotelyak, A. I. Dikusar
{"title":"Effect of Cathode Surface Area on the Electrodeposition Rate, Composition, and Microhardness of Co–W Coatings Deposited from a Citrate Bath","authors":"A. V. Gotelyak,&nbsp;A. I. Dikusar","doi":"10.3103/S1068375524020042","DOIUrl":null,"url":null,"abstract":"<p>Here, by the example of galvanostatic electrodeposition of Co–W coatings from a citrate bath, we demonstrate experimentally that when using the results on the deposition rate and the composition and properties (microhardness) of resulting coatings observed under laboratory conditions to develop this type of an electrodeposition process on a larger (industrial) scale the bath volume must be scaled in proportion to the increase in the cathode area. In this case, the current loading on the electrolyte, which is quantitatively expressed as the volume current density, does not increase.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 2","pages":"241 - 246"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524020042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Here, by the example of galvanostatic electrodeposition of Co–W coatings from a citrate bath, we demonstrate experimentally that when using the results on the deposition rate and the composition and properties (microhardness) of resulting coatings observed under laboratory conditions to develop this type of an electrodeposition process on a larger (industrial) scale the bath volume must be scaled in proportion to the increase in the cathode area. In this case, the current loading on the electrolyte, which is quantitatively expressed as the volume current density, does not increase.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阴极表面积对柠檬酸盐浴沉积的 Co-W 涂层的电沉积速率、成分和显微硬度的影响
摘要 在这里,我们以柠檬酸盐浴中的 Co-W 涂层的电静电沉积为例,通过实验证明,当利用在实验室条件下观察到的沉积速率、所得涂层的成分和特性(微硬度)方面的结果,在更大(工业)规模上开发这种类型的电沉积工艺时,浴槽体积必须与阴极面积的增加成比例。在这种情况下,电解液上的电流负荷(用体积电流密度定量表示)不会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Calculation of the Main Averaged Characteristics of the Drift of Lone Electrons in a Metal Conductor with a Conduction Current Autonomous Devices with an Evaporation–Condensation Cycle for Thermal Control of Heat-Loaded Equipment Experimental Method and Software Instruments for Sliding Tribosystem Dynamic Behavior Research Investigating Ultrasonically Assisted CdxCryFe3 – (x + y)O4 for Its Electrochemical Efficacy towards Water Electrolysis, Ethanol and Methanol Oxidation The Effect of Preparation Conditions on the Characteristics of Anodized Copper Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1