Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-04-27 DOI:10.1002/qua.27383
Jing Jiang, Shunping Shi, Xiaofeng Zhao, Zhanjiang Duan, Jiabao Hu, Leilei Tang, Ruixiao Yang, Jing Yang
{"title":"Investigating the catalytic activity of Mgn (n = 4–8) clusters for the hydrogen evolution reaction using density functional theory","authors":"Jing Jiang,&nbsp;Shunping Shi,&nbsp;Xiaofeng Zhao,&nbsp;Zhanjiang Duan,&nbsp;Jiabao Hu,&nbsp;Leilei Tang,&nbsp;Ruixiao Yang,&nbsp;Jing Yang","doi":"10.1002/qua.27383","DOIUrl":null,"url":null,"abstract":"<p>To efficiently desorb H<sub>2</sub>, pure Mg<sub><i>n</i></sub> (<i>n</i> = 4–8) clusters were chosen for the hydrogen evolution reaction with H<sub>2</sub>O. At the PBE0/def2-TZVP level and the PBE0-D3/def2-TZVP level, the lowest energy structures of Mg<sub><i>n</i></sub> (<i>n</i> = 4–8) clusters and the most stable structures of Mg<sub><i>n</i></sub>@H<sub>2</sub>O (<i>n</i> = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mg<sub><i>n</i></sub>@H<sub>2</sub>O (<i>n</i> = 4–8) complexes and Mg<sub><i>n</i></sub>O (<i>n</i> = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg<sub>4</sub> cluster and H<sub>2</sub>O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27383","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To efficiently desorb H2, pure Mgn (n = 4–8) clusters were chosen for the hydrogen evolution reaction with H2O. At the PBE0/def2-TZVP level and the PBE0-D3/def2-TZVP level, the lowest energy structures of Mgn (n = 4–8) clusters and the most stable structures of Mgn@H2O (n = 4–8) complexes were searched in the local region. The transition state was predicted, and then the hydrogen evolution reaction channel was obtained by using the intrinsic reaction coordinate (IRC) to confirm the transition state. To better analyze the hydrogen reaction mechanism, the character of Mgn@H2O (n = 4–8) complexes and MgnO (n = 4–8) clusters, as well as the atomic charge change trend, were investigated using interaction region indicator function analysis (IRI) and natural population analysis (NPA). The reaction effect of Mg4 cluster and H2O is the worst. The energy barrier does, however, progressively lower as the cluster atom count rises, improving the reaction effect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用密度泛函理论研究 Mgn(n = 4-8)团簇在氢进化反应中的催化活性
为了有效地解吸 H2,选择了纯 Mgn(n = 4-8)团簇与 H2O 进行氢进化反应。在 PBE0/def2-TZVP 水平和 PBE0-D3/def2-TZVP 水平上,在局部区域搜索了 Mgn(n = 4-8)团簇的最低能量结构和 Mgn@H2O (n = 4-8)复合物的最稳定结构。预测了过渡态,然后利用本征反应坐标(IRC)得到了氢进化反应通道,从而确认了过渡态。为了更好地分析氢反应机理,利用相互作用区域指示函数分析(IRI)和自然群体分析(NPA)研究了 Mgn@H2O (n = 4-8) 复合物和 MgnO (n = 4-8) 团簇的性质以及原子电荷的变化趋势。Mg4 团簇与 H2O 的反应效果最差。不过,随着团簇原子数的增加,能量势垒确实逐渐降低,从而改善了反应效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Exploring Chlorinated Solvents as Electrolytes for Lithium Metal Batteries: A DFT and MD Study Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations Evaluating Electronic Properties of Self-Assembled Indium Phosphide Nanomaterials as High-Efficient Solar Cell Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates DFT Computation, Spectroscopic, Hirshfeld Surface, Docking and Topological Analysis on 2,2,5-Trimethyl-1,3-Dioxane-5-Carboxylic Acid as Potent Anti-Cancer Agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1