{"title":"Pure Mg foams stabilized by CaO particles","authors":"Akshay Devikar, G.S. Vinod Kumar","doi":"10.1007/s10934-024-01609-5","DOIUrl":null,"url":null,"abstract":"<div><p>Pure Mg foams stabilized by ex-situ added CaO particles were developed in this study. Mg/<i>x</i>CaO foams (<i>x</i> = 5, 7 and 10 wt.%) exhibited uniform pore distribution, thinner yet stable pore wall cross-sections. Mg-Ca-O transition phase and MgO particles were formed at the interface of Mg-CaO, which improved the wetting of CaO particles in the Mg melt. The CaO particles, Mg-Ca-O transition phase and blocky MgO particles collectively stabilized the foam. Mg-Ca-O and MgO phases disperse along the gas-liquid interface of foams thereby preventing from wrinkling of interfaces during solidification. TEM analysis of Mg/10wt.% CaO foam powder also confirmed the formation of nano-sized (~ 200 nm) MgO particles of different morphologies. TG-DSC analysis confirmed the exothermic Mg-CaO reaction at 610 ºC, resulting in formation of Mg<sub>2</sub>Ca and MgO phases, as identified using XRD analysis. 7 wt.% CaO addition exhibited the best foam structure in terms of mean pore diameter (2.19 mm) and circularity (0.75). The lowest foam density of 0.38 g/cm<sup>3</sup> and relative density of 21 % was achieved in case of Mg/10wt.% CaO foams.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1617 - 1628"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01609-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pure Mg foams stabilized by ex-situ added CaO particles were developed in this study. Mg/xCaO foams (x = 5, 7 and 10 wt.%) exhibited uniform pore distribution, thinner yet stable pore wall cross-sections. Mg-Ca-O transition phase and MgO particles were formed at the interface of Mg-CaO, which improved the wetting of CaO particles in the Mg melt. The CaO particles, Mg-Ca-O transition phase and blocky MgO particles collectively stabilized the foam. Mg-Ca-O and MgO phases disperse along the gas-liquid interface of foams thereby preventing from wrinkling of interfaces during solidification. TEM analysis of Mg/10wt.% CaO foam powder also confirmed the formation of nano-sized (~ 200 nm) MgO particles of different morphologies. TG-DSC analysis confirmed the exothermic Mg-CaO reaction at 610 ºC, resulting in formation of Mg2Ca and MgO phases, as identified using XRD analysis. 7 wt.% CaO addition exhibited the best foam structure in terms of mean pore diameter (2.19 mm) and circularity (0.75). The lowest foam density of 0.38 g/cm3 and relative density of 21 % was achieved in case of Mg/10wt.% CaO foams.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.