{"title":"Experimental Study on Consolidation Characteristics of Concentrated Full Tailings and Research on Pore Water Relief Methods of Piles","authors":"Sha Wang, Guodong Mei, Yifan Chu, Weixiang Wang, Yali Wang, Lijie Guo","doi":"10.1155/2024/6644300","DOIUrl":null,"url":null,"abstract":"Surface harmless storage of concentrated full tailings (CFTs) involves the technology of adding a curing agent to the tailings slurry discharged from the thickener to realize the modification of the tailings and centralized storage of the tailings on the surface to realize the harmless treatment of the tailings. High water content of tailings is still the key technical problem that restricts the harmless storage of piles at present. Regarding the above problems, we implemented the consolidation test and numerical simulation of seepage-stress coupling consolidation of CFT, clarified the consolidation characteristics and parameters of CFT under different curing ages, and conducted a comparative analysis of pore water pressure in the whole cross-section of piles with different drainage schemes based on the results of the test. In addition, we also clarified the drainage effect of interlayer drainage on reducing the excess pore water pressure of piles and compared the simulation results of the pore water pressure of piles under different permeability coefficients. The results show that as the permeability coefficient of the concentrated tailings material decreases, the pore pressure accumulation inside piles under the same drainage scheme is more serious, and the length of time for consolidation and stabilization becomes longer. Therefore, it is recommended that the excess porous water pressure be relieved by means of increased drainage facilities under a small permeability coefficient.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"72 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6644300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface harmless storage of concentrated full tailings (CFTs) involves the technology of adding a curing agent to the tailings slurry discharged from the thickener to realize the modification of the tailings and centralized storage of the tailings on the surface to realize the harmless treatment of the tailings. High water content of tailings is still the key technical problem that restricts the harmless storage of piles at present. Regarding the above problems, we implemented the consolidation test and numerical simulation of seepage-stress coupling consolidation of CFT, clarified the consolidation characteristics and parameters of CFT under different curing ages, and conducted a comparative analysis of pore water pressure in the whole cross-section of piles with different drainage schemes based on the results of the test. In addition, we also clarified the drainage effect of interlayer drainage on reducing the excess pore water pressure of piles and compared the simulation results of the pore water pressure of piles under different permeability coefficients. The results show that as the permeability coefficient of the concentrated tailings material decreases, the pore pressure accumulation inside piles under the same drainage scheme is more serious, and the length of time for consolidation and stabilization becomes longer. Therefore, it is recommended that the excess porous water pressure be relieved by means of increased drainage facilities under a small permeability coefficient.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.