Experimental Study on Consolidation Characteristics of Concentrated Full Tailings and Research on Pore Water Relief Methods of Piles

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-04-29 DOI:10.1155/2024/6644300
Sha Wang, Guodong Mei, Yifan Chu, Weixiang Wang, Yali Wang, Lijie Guo
{"title":"Experimental Study on Consolidation Characteristics of Concentrated Full Tailings and Research on Pore Water Relief Methods of Piles","authors":"Sha Wang, Guodong Mei, Yifan Chu, Weixiang Wang, Yali Wang, Lijie Guo","doi":"10.1155/2024/6644300","DOIUrl":null,"url":null,"abstract":"Surface harmless storage of concentrated full tailings (CFTs) involves the technology of adding a curing agent to the tailings slurry discharged from the thickener to realize the modification of the tailings and centralized storage of the tailings on the surface to realize the harmless treatment of the tailings. High water content of tailings is still the key technical problem that restricts the harmless storage of piles at present. Regarding the above problems, we implemented the consolidation test and numerical simulation of seepage-stress coupling consolidation of CFT, clarified the consolidation characteristics and parameters of CFT under different curing ages, and conducted a comparative analysis of pore water pressure in the whole cross-section of piles with different drainage schemes based on the results of the test. In addition, we also clarified the drainage effect of interlayer drainage on reducing the excess pore water pressure of piles and compared the simulation results of the pore water pressure of piles under different permeability coefficients. The results show that as the permeability coefficient of the concentrated tailings material decreases, the pore pressure accumulation inside piles under the same drainage scheme is more serious, and the length of time for consolidation and stabilization becomes longer. Therefore, it is recommended that the excess porous water pressure be relieved by means of increased drainage facilities under a small permeability coefficient.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6644300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface harmless storage of concentrated full tailings (CFTs) involves the technology of adding a curing agent to the tailings slurry discharged from the thickener to realize the modification of the tailings and centralized storage of the tailings on the surface to realize the harmless treatment of the tailings. High water content of tailings is still the key technical problem that restricts the harmless storage of piles at present. Regarding the above problems, we implemented the consolidation test and numerical simulation of seepage-stress coupling consolidation of CFT, clarified the consolidation characteristics and parameters of CFT under different curing ages, and conducted a comparative analysis of pore water pressure in the whole cross-section of piles with different drainage schemes based on the results of the test. In addition, we also clarified the drainage effect of interlayer drainage on reducing the excess pore water pressure of piles and compared the simulation results of the pore water pressure of piles under different permeability coefficients. The results show that as the permeability coefficient of the concentrated tailings material decreases, the pore pressure accumulation inside piles under the same drainage scheme is more serious, and the length of time for consolidation and stabilization becomes longer. Therefore, it is recommended that the excess porous water pressure be relieved by means of increased drainage facilities under a small permeability coefficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浓缩全尾矿固结特性试验研究及桩基孔隙水疏松方法研究
浓缩全尾矿(CFTs)地表无害化堆存涉及在浓缩机排出的尾矿浆中添加固化剂实现尾矿改性和尾矿地表集中堆存实现尾矿无害化处理的技术。尾矿含水率高仍然是目前制约尾矿库无害化堆存的关键技术问题。针对上述问题,我们进行了 CFT 的固结试验和渗流-应力耦合固结数值模拟,明确了不同固化龄期下 CFT 的固结特性和参数,并根据试验结果对不同排水方案的桩体全断面孔隙水压力进行了对比分析。此外,我们还明确了层间排水对降低桩身过剩孔隙水压力的排水效果,并比较了不同渗透系数下桩身孔隙水压力的模拟结果。结果表明,随着尾矿浓缩材料渗透系数的降低,在相同排水方案下,桩内孔隙压力积聚更严重,固结稳定时间更长。因此,建议在渗透系数较小的情况下,通过增加排水设施来缓解多余的孔隙水压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1