A Central Pattern Generator Network for Simple Control of Gait Transitions in Hexapod Robots based on Phase Reduction

Norihisa Namura, Hiroya Nakao
{"title":"A Central Pattern Generator Network for Simple Control of Gait Transitions in Hexapod Robots based on Phase Reduction","authors":"Norihisa Namura, Hiroya Nakao","doi":"arxiv-2404.17139","DOIUrl":null,"url":null,"abstract":"We present a model of the central pattern generator (CPG) network that can\ncontrol gait transitions in hexapod robots in a simple manner based on phase\nreduction. The CPG network consists of six weakly coupled limit-cycle\noscillators, whose synchronization dynamics can be described by six phase\nequations through phase reduction. Focusing on the transitions between the\nhexapod gaits with specific symmetries, the six phase equations of the CPG\nnetwork can further be reduced to two independent equations for the phase\ndifferences. By choosing appropriate coupling functions for the network, we can\nachieve desired synchronization dynamics regardless of the detailed properties\nof the limit-cycle oscillators used for the CPG. The effectiveness of our CPG\nnetwork is demonstrated by numerical simulations of gait transitions between\nthe wave, tetrapod, and tripod gaits, using the FitzHugh-Nagumo oscillator as\nthe CPG unit.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.17139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a model of the central pattern generator (CPG) network that can control gait transitions in hexapod robots in a simple manner based on phase reduction. The CPG network consists of six weakly coupled limit-cycle oscillators, whose synchronization dynamics can be described by six phase equations through phase reduction. Focusing on the transitions between the hexapod gaits with specific symmetries, the six phase equations of the CPG network can further be reduced to two independent equations for the phase differences. By choosing appropriate coupling functions for the network, we can achieve desired synchronization dynamics regardless of the detailed properties of the limit-cycle oscillators used for the CPG. The effectiveness of our CPG network is demonstrated by numerical simulations of gait transitions between the wave, tetrapod, and tripod gaits, using the FitzHugh-Nagumo oscillator as the CPG unit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相位还原的六足机器人步态转换简易控制中央模式发生器网络
我们提出了一种中央模式发生器(CPG)网络模型,该模型可以基于相位还原法以简单的方式控制六足机器人的步态转换。中央模式发生器网络由六个弱耦合极限周期振荡器组成,其同步动态可通过相位还原法用六个相位方程来描述。针对具有特定对称性的六足步态之间的转换,CPG 网络的六个相位方程可以进一步简化为两个独立的相位差方程。通过为网络选择适当的耦合函数,我们可以实现理想的同步动态,而无需考虑用于 CPG 的极限周期振荡器的详细特性。我们使用 FitzHugh-Nagumo 振荡器作为 CPG 单元,对波浪式、四足式和三足式步态之间的步态转换进行了数值模拟,从而证明了我们的 CPG 网络的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1