Antihypertensive, Antidiabetic, and Antioxidant Properties of Novel Azolla pinnata Fern Protein Hydrolysates: Inhibition Mechanism, Stability, Profiling, and Molecular Docking

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food and Bioprocess Technology Pub Date : 2024-04-27 DOI:10.1007/s11947-024-03412-1
Mohammed S. Qoms, Brisha Arulrajah, Wan Zunairah Wan Ibadullah, Nurul Shazini Ramli, Rosnah Shamsudin, De-Ming Chau, Nazamid Saari
{"title":"Antihypertensive, Antidiabetic, and Antioxidant Properties of Novel Azolla pinnata Fern Protein Hydrolysates: Inhibition Mechanism, Stability, Profiling, and Molecular Docking","authors":"Mohammed S. Qoms, Brisha Arulrajah, Wan Zunairah Wan Ibadullah, Nurul Shazini Ramli, Rosnah Shamsudin, De-Ming Chau, Nazamid Saari","doi":"10.1007/s11947-024-03412-1","DOIUrl":null,"url":null,"abstract":"<p>The <i>Azolla pinnata</i> fern protein was enzymatically hydrolysed with Alcalase, Flavourzyme, and Papain at varying degrees of hydrolysis (10, 20, and 30%) to generate multi-biologically active protein hydrolysates. The extensively hydrolysed (30%) Alcalase-generated hydrolysate (AFPH-AE) was most active demonstrating antihypertensive (ACE inhibition), antidiabetic (DPP-IV, α-glucosidase, and α-amylase inhibition), and antioxidant (DPPH, ABTS, and FRAP) activities. AFPH-AE exhibited an uncompetitive inhibition mode against ACE and α-glucosidase, a mixed inhibition mode against α-amylase, and a noncompetitive inhibition mode against DPP-IV. This hydrolysate was highly stable under different food processing conditions including pH 5, 7, and 8, NaCl up to 150 mM, and a high temperature of 100 °C. The low molecular weight fraction (&lt; 3 kDa) exhibited high biological activities, and a total of 15 low molecular weight bioactive peptides were identified. Molecular docking revealed that the peptide-enzyme interactions were mainly mediated via hydrogen bonds and hydrophobic interactions. Overall, these findings reveal the potential of AFPH-AE as a functional and/or nutraceutical ingredient with multifunctional antihypertensive, antidiabetic, and antioxidant effects.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03412-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Azolla pinnata fern protein was enzymatically hydrolysed with Alcalase, Flavourzyme, and Papain at varying degrees of hydrolysis (10, 20, and 30%) to generate multi-biologically active protein hydrolysates. The extensively hydrolysed (30%) Alcalase-generated hydrolysate (AFPH-AE) was most active demonstrating antihypertensive (ACE inhibition), antidiabetic (DPP-IV, α-glucosidase, and α-amylase inhibition), and antioxidant (DPPH, ABTS, and FRAP) activities. AFPH-AE exhibited an uncompetitive inhibition mode against ACE and α-glucosidase, a mixed inhibition mode against α-amylase, and a noncompetitive inhibition mode against DPP-IV. This hydrolysate was highly stable under different food processing conditions including pH 5, 7, and 8, NaCl up to 150 mM, and a high temperature of 100 °C. The low molecular weight fraction (< 3 kDa) exhibited high biological activities, and a total of 15 low molecular weight bioactive peptides were identified. Molecular docking revealed that the peptide-enzyme interactions were mainly mediated via hydrogen bonds and hydrophobic interactions. Overall, these findings reveal the potential of AFPH-AE as a functional and/or nutraceutical ingredient with multifunctional antihypertensive, antidiabetic, and antioxidant effects.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型羽扇豆蕨类蛋白质水解物的抗高血压、抗糖尿病和抗氧化特性:抑制机制、稳定性、剖析和分子对接
用钙化酶、黄酮酶和木瓜蛋白酶对羽扇豆蕨类蛋白质进行不同程度的水解(10%、20% 和 30%),生成具有多种生物活性的蛋白质水解物。经大量水解(30%)的阿尔卡拉酶生成的水解物(AFPH-AE)活性最高,具有抗高血压(抑制 ACE)、抗糖尿病(抑制 DPP-IV、α-葡萄糖苷酶和 α-淀粉酶)和抗氧化(DPPH、ABTS 和 FRAP)活性。AFPH-AE 对 ACE 和 α 葡萄糖苷酶具有非竞争性抑制作用,对 α 淀粉酶具有混合抑制作用,对 DPP-IV 具有非竞争性抑制作用。这种水解物在不同的食品加工条件下(包括 pH 值为 5、7 和 8,氯化钠高达 150 mM,以及 100 °C 的高温)都非常稳定。低分子量部分(< 3 kDa)具有很高的生物活性,共鉴定出 15 种低分子量生物活性肽。分子对接显示,肽与酶的相互作用主要是通过氢键和疏水作用介导的。总之,这些发现揭示了 AFPH-AE 作为一种具有多功能降压、抗糖尿病和抗氧化作用的功能性和/或营养保健成分的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Bioprocess Technology
Food and Bioprocess Technology 农林科学-食品科技
CiteScore
9.50
自引率
19.60%
发文量
200
审稿时长
2.8 months
期刊介绍: Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community. The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.
期刊最新文献
Surfactin and its Antibacterial Mechanism on Staphylococcus Aureus and Application in Pork Preservation Electrospun Pullulan/Hemp Protein Nanohybrids for Sustained Release of Phenylethanoid Glycosides Poly(Lactic Acid) Composite with Chitosan: Synergistic Effects of Physical Hurdles and Kinetics of Bacterial Inactivation Preparation of Slow-Release Polylactic Acid Antibacterial Active Packaging Films and Its Application in Spinach Preservation Encapsulation of Essential Oil-Cyclodextrin Inclusion Complexes in Electrospun Pullulan Nanofibers: Enhanced Storage Stability and Antibacterial Property for Geraniol and Linalool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1