Pub Date : 2024-09-19DOI: 10.1007/s11947-024-03597-5
Juan Pablo Hernández-Rodríguez, Julia Mariana Márquez-Reyes, Rocío Yaneli Aguirre-Loredo, Beatriz Adriana Rodríguez-Romero, Mayra Zulema Treviño-Garza
This research presents a unique approach to partially characterizing microbial cellulose films. The films were produced during the fermentation of moringa stems, a novel substrate, and coated with flaxseed mucilage. The fermentation of kombucha using moringa stem infusion produced microbial cellulose discs (185 g/L) coated with flaxseed mucilage. The fermentation of kombucha using moringa stem infusion resulted in the production of microbial cellulose discs (185 g/L) coated with flaxseed mucilage. The study conducted a comprehensive physical, chemical, and antimicrobial characterization of the discs, both coated (RCD) and not coated (NCD) with flaxseed mucilage. The physical characterization revealed significant changes when coated with flaxseed mucilage, including increased opacity (31.06%), barrier properties (235 nm), thickness (0.85 mm), and color analysis (L = 61.83, a* = 22.13 and b* = 44.21). Infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the absorption bands at 3344 and 2894 cm−1, indicating cellulose type I and a crystallinity of the cellulose (94%). Chemical analysis evaluated the antioxidant capacity using DPPH (68.49–71.39%), ABTS (77.24–68.40%), total phenols (68.40–112.30 mg GAE/g), and FRAP (1103–1124 µM TE/g) tests and found no differences in activity between the discs. Antimicrobial activity differed between treatments against pathogens. NCDs inhibited the growth of E. coli (16.4 mm) and S. aureus (11.4 mm), while RCDs inhibited Salmonella sp. (12.5 mm). The results suggest that cellulose formed during the fermentation of kombucha with moringa stems and coated with flaxseed mucilage can have various applications due to its antioxidant and antimicrobial activity.
{"title":"Production and Preliminary Characterization of Microbial Cellulose Generated in Fermented Moringa and Coated with Flaxseed Mucilage","authors":"Juan Pablo Hernández-Rodríguez, Julia Mariana Márquez-Reyes, Rocío Yaneli Aguirre-Loredo, Beatriz Adriana Rodríguez-Romero, Mayra Zulema Treviño-Garza","doi":"10.1007/s11947-024-03597-5","DOIUrl":"https://doi.org/10.1007/s11947-024-03597-5","url":null,"abstract":"<p>This research presents a unique approach to partially characterizing microbial cellulose films. The films were produced during the fermentation of moringa stems, a novel substrate, and coated with flaxseed mucilage. The fermentation of kombucha using moringa stem infusion produced microbial cellulose discs (185 g/L) coated with flaxseed mucilage. The fermentation of kombucha using moringa stem infusion resulted in the production of microbial cellulose discs (185 g/L) coated with flaxseed mucilage. The study conducted a comprehensive physical, chemical, and antimicrobial characterization of the discs, both coated (RCD) and not coated (NCD) with flaxseed mucilage. The physical characterization revealed significant changes when coated with flaxseed mucilage, including increased opacity (31.06%), barrier properties (235 nm), thickness (0.85 mm), and color analysis (<i>L</i> = 61.83, <i>a</i>* = 22.13 and <i>b</i>* = 44.21). Infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the absorption bands at 3344 and 2894 cm<sup>−1</sup>, indicating cellulose type I and a crystallinity of the cellulose (94%). Chemical analysis evaluated the antioxidant capacity using DPPH (68.49–71.39%), ABTS (77.24–68.40%), total phenols (68.40–112.30 mg GAE/g), and FRAP (1103–1124 µM TE/g) tests and found no differences in activity between the discs. Antimicrobial activity differed between treatments against pathogens. NCDs inhibited the growth of <i>E. coli</i> (16.4 mm) and <i>S. aureus</i> (11.4 mm), while RCDs inhibited <i>Salmonella sp.</i> (12.5 mm). The results suggest that cellulose formed during the fermentation of kombucha with moringa stems and coated with flaxseed mucilage can have various applications due to its antioxidant and antimicrobial activity.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"46 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s11947-024-03603-w
Alfonso Totosaus, Jorge Luís Garrido-Cruz, José Ángel Pérez-Álvarez, M. Lourdes Pérez-Chabela
Pomegranate peel flour was employed as a co-encapsulant of two lactic acid bacteria, by alginate emulsion templated microencapsulation, to enhance their resistance to thermal treatment, acidic pHs, and gastric conditions. Samples with pomegranate peel flour increased the tolerance to heat treatment, results consistent with thermal properties related to higher denaturation enthalpy of microcapsules. Co-encapsulated microcapsules also enhanced the survival to low pHs and enhanced almost 60% up the tolerance to bile salts. There was also an increase in survival rate against in vitro gastric acid conditions due to use of the co-encapsulant. In scanning electron microscopy, the incorporation of pomegranate peel flour resulted in a rough and porous structure, probably due to certain interference with the formation of spherical microcapsules, although it presented similar mean diameter, plus higher cell viability as confirmed by confocal laser microscopy. The obtained results indicate that co-encapsulation with a prebiotic ingredient represents a reinforcement of the physical microcapsule integrity to tolerate food process temperatures, besides retarding the adverse effect of acidic, bile salts, and simulated gastrointestinal conditions. The micro alginate co-encapsulation by ionic gelation with a prebiotic as pomegranate peel flour is a suitable alternative to develop thermal processed functional foods.
{"title":"Pomegranate Peel Flour as a Co-encapsulant Improves the Survival of Lactic Acid Bacteria to Thermal Treatment and Simulated Gastrointestinal Conditions","authors":"Alfonso Totosaus, Jorge Luís Garrido-Cruz, José Ángel Pérez-Álvarez, M. Lourdes Pérez-Chabela","doi":"10.1007/s11947-024-03603-w","DOIUrl":"https://doi.org/10.1007/s11947-024-03603-w","url":null,"abstract":"<p>Pomegranate peel flour was employed as a co-encapsulant of two lactic acid bacteria, by alginate emulsion templated microencapsulation, to enhance their resistance to thermal treatment, acidic pHs, and gastric conditions. Samples with pomegranate peel flour increased the tolerance to heat treatment, results consistent with thermal properties related to higher denaturation enthalpy of microcapsules. Co-encapsulated microcapsules also enhanced the survival to low pHs and enhanced almost 60% up the tolerance to bile salts. There was also an increase in survival rate against in vitro gastric acid conditions due to use of the co-encapsulant. In scanning electron microscopy, the incorporation of pomegranate peel flour resulted in a rough and porous structure, probably due to certain interference with the formation of spherical microcapsules, although it presented similar mean diameter, plus higher cell viability as confirmed by confocal laser microscopy. The obtained results indicate that co-encapsulation with a prebiotic ingredient represents a reinforcement of the physical microcapsule integrity to tolerate food process temperatures, besides retarding the adverse effect of acidic, bile salts, and simulated gastrointestinal conditions. The micro alginate co-encapsulation by ionic gelation with a prebiotic as pomegranate peel flour is a suitable alternative to develop thermal processed functional foods.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"39 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s11947-024-03587-7
Gidado M. J., Ahmad Anas Nagoor Gunny, Subash C. B. Gopinath, Noor Hasyierah Mohd Salleh, Sunil Pareek, Kunasundari Balakrishnan
This study examines the effects of a hydrophobic deep eutectic oil-in-water nanoemulsion (HyDEN) on the cell membrane degradation and inhibition of Colletotrichum gloeosporioides. By analyzing post-treatment cell membrane morphology, we gain insights into the efficacy and mechanisms of action of antifungal agents. Significant changes such as disruption, collapse, wrinkling, and lysis were observed in the external morphology of C. gloeosporioides treated with HyDEN. When comparing control and treatment groups, HyDEN demonstrated more pronounced disruption and greater mycelial growth inhibition than Globus 5.5. HyDEN also effectively inhibited spore germination compared to Globus 5.5. Tests on intracellular ion leakage showed that HyDEN caused higher conductivity, indicating significant membrane disruption. Additionally, HyDEN led to a greater release of soluble sugars due to membrane damage compared to Globus 5.5. These findings suggest that HyDEN is a promising antifungal strategy, effectively disrupting cell wall and membrane functionality, and inhibiting fungal growth.