Zijian Gao , Lei Li , Minghui Liu, Shen Tian, Mingyang Feng, Yingying Qiao, Chongxin Shan
{"title":"Photoacoustic trace gas detection of OCS using a 2.45 mL Helmholtz resonator and a 4823.3 nm ICL light source","authors":"Zijian Gao , Lei Li , Minghui Liu, Shen Tian, Mingyang Feng, Yingying Qiao, Chongxin Shan","doi":"10.1016/j.pacs.2024.100612","DOIUrl":null,"url":null,"abstract":"<div><p>A miniaturized photoacoustic spectroscopy-based gas sensor is proposed for the purpose of detecting sub-ppm-level carbonyl sulfide (OCS) using a tunable mid-infrared interband cascade laser (ICL) and a Helmholtz photoacoustic cell. The tuning characteristics of the tunable ICL with a center wavelength of 4823.3 nm were investigated to achieve the optimal driving parameters. A Helmholtz photoacoustic cell with a volume of ∼2.45 mL was designed and optimized to miniaturize the measurement system. By optimizing the modulation parameters and signal processing, the system was verified to have a good linear response to OCS concentration. With a lock-in amplifier integration time of 10 s, the 1σ noise standard deviation in differential mode was 0.84 mV and a minimum detection limit (MDL) of 409.2 ppbV was achieved at atmospheric pressure and room temperature.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"38 ","pages":"Article 100612"},"PeriodicalIF":7.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213597924000296/pdfft?md5=c999ade4ca4469a94bf9c373027291a2&pid=1-s2.0-S2213597924000296-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000296","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A miniaturized photoacoustic spectroscopy-based gas sensor is proposed for the purpose of detecting sub-ppm-level carbonyl sulfide (OCS) using a tunable mid-infrared interband cascade laser (ICL) and a Helmholtz photoacoustic cell. The tuning characteristics of the tunable ICL with a center wavelength of 4823.3 nm were investigated to achieve the optimal driving parameters. A Helmholtz photoacoustic cell with a volume of ∼2.45 mL was designed and optimized to miniaturize the measurement system. By optimizing the modulation parameters and signal processing, the system was verified to have a good linear response to OCS concentration. With a lock-in amplifier integration time of 10 s, the 1σ noise standard deviation in differential mode was 0.84 mV and a minimum detection limit (MDL) of 409.2 ppbV was achieved at atmospheric pressure and room temperature.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.