Mitigation of gravity-induced distortions of binder-jetting components during rotational sintering

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2024-04-26 DOI:10.1016/j.addlet.2024.100215
Thomas Grippi , Elisa Torresani , Alberto Cabo Rios , Andrii L. Maximenko , Marco Zago , Ilaria Cristofolini , Alberto Molinari , Rajendra K. Bordia , Eugene A. Olevsky
{"title":"Mitigation of gravity-induced distortions of binder-jetting components during rotational sintering","authors":"Thomas Grippi ,&nbsp;Elisa Torresani ,&nbsp;Alberto Cabo Rios ,&nbsp;Andrii L. Maximenko ,&nbsp;Marco Zago ,&nbsp;Ilaria Cristofolini ,&nbsp;Alberto Molinari ,&nbsp;Rajendra K. Bordia ,&nbsp;Eugene A. Olevsky","doi":"10.1016/j.addlet.2024.100215","DOIUrl":null,"url":null,"abstract":"<div><p>Using theory and simulations, the challenge of gravity-induced distortions during sintering is addressed and a mitigation strategy is proposed. Based on the continuum theory of sintering, the finite element simulation demonstrates the advantages of a rotating furnace to counteract gravity forces during sintering. Its application for stainless steel hollow parts produced by additive manufacturing (binder jetting) is demonstrated, numerically, for reliable industrial production of complex shapes. Sintering a tube in a very slow rotating motion exhibits an improvement in the final deformation ratio compared to a conventional sintering process.</p><p>The same concept has been adapted for higher furnace revolution speeds and the centrifugal force is now surpassing the effects of gravity. An extended study of sintering under microgravity for space-borne applications is also widely depicted with the same model. Indeed, it shows the possibility of reproducing Earth's sintering conditions at places where gravity is insufficient to provide acceptable densification and shape conservation during sintering.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000240/pdfft?md5=d925aaba3ed20a08896410422e09d919&pid=1-s2.0-S2772369024000240-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Using theory and simulations, the challenge of gravity-induced distortions during sintering is addressed and a mitigation strategy is proposed. Based on the continuum theory of sintering, the finite element simulation demonstrates the advantages of a rotating furnace to counteract gravity forces during sintering. Its application for stainless steel hollow parts produced by additive manufacturing (binder jetting) is demonstrated, numerically, for reliable industrial production of complex shapes. Sintering a tube in a very slow rotating motion exhibits an improvement in the final deformation ratio compared to a conventional sintering process.

The same concept has been adapted for higher furnace revolution speeds and the centrifugal force is now surpassing the effects of gravity. An extended study of sintering under microgravity for space-borne applications is also widely depicted with the same model. Indeed, it shows the possibility of reproducing Earth's sintering conditions at places where gravity is insufficient to provide acceptable densification and shape conservation during sintering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓解旋转烧结过程中粘合剂喷射部件因重力引起的变形
通过理论和模拟,解决了烧结过程中重力引起的变形这一难题,并提出了缓解策略。基于烧结连续体理论,有限元模拟展示了旋转炉在烧结过程中抵消重力的优势。通过数值模拟,证明了其在通过增材制造(粘合剂喷射)生产的不锈钢空心零件中的应用,从而实现了复杂形状的可靠工业生产。与传统烧结工艺相比,在极慢的旋转运动中烧结管材可提高最终变形率。同样的概念也适用于更高的熔炉旋转速度,目前离心力已超过重力作用。同样的模型还广泛应用于微重力条件下的烧结研究。事实上,在重力不足以在烧结过程中提供可接受的致密化和形状保持的地方,它显示了重现地球烧结条件的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Modelling process monitoring data in laser powder bed fusion: A pragmatic route to additive manufacturing quality assurance Drop-on-demand 3D printing of programable magnetic composites for soft robotics In-situ heating TEM observation of solidification cell evolutions in an Al-Fe alloy built by laser-powder bed fusion A non-melting additive approach to structural repair of aluminum aircraft fastener holes Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1