David Berghaus, Robert Stephen Jones, Hartmut Monien, Danylo Radchenko
{"title":"Computation of Laplacian eigenvalues of two-dimensional shapes with dihedral symmetry","authors":"David Berghaus, Robert Stephen Jones, Hartmut Monien, Danylo Radchenko","doi":"10.1007/s10444-024-10138-3","DOIUrl":null,"url":null,"abstract":"<div><p>We numerically compute the lowest Laplacian eigenvalues of several two-dimensional shapes with dihedral symmetry at arbitrary precision arithmetic. Our approach is based on the method of particular solutions with domain decomposition. We are particularly interested in asymptotic expansions of the eigenvalues <span>\\(\\lambda (n)\\)</span> of shapes with <i>n</i> edges that are of the form <span>\\(\\lambda (n) \\sim x\\sum _{k=0}^{\\infty } \\frac{C_k(x)}{n^k}\\)</span> where <i>x</i> is the limiting eigenvalue for <span>\\(n\\rightarrow \\infty \\)</span>. Expansions of this form have previously only been known for regular polygons with Dirichlet boundary conditions and (quite surprisingly) involve Riemann zeta values and single-valued multiple zeta values, which makes them interesting to study. We provide numerical evidence for closed-form expressions of higher order <span>\\(C_k(x)\\)</span> and give more examples of shapes for which such expansions are possible (including regular polygons with Neumann boundary condition, regular star polygons, and star shapes with sinusoidal boundary).</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10138-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10138-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We numerically compute the lowest Laplacian eigenvalues of several two-dimensional shapes with dihedral symmetry at arbitrary precision arithmetic. Our approach is based on the method of particular solutions with domain decomposition. We are particularly interested in asymptotic expansions of the eigenvalues \(\lambda (n)\) of shapes with n edges that are of the form \(\lambda (n) \sim x\sum _{k=0}^{\infty } \frac{C_k(x)}{n^k}\) where x is the limiting eigenvalue for \(n\rightarrow \infty \). Expansions of this form have previously only been known for regular polygons with Dirichlet boundary conditions and (quite surprisingly) involve Riemann zeta values and single-valued multiple zeta values, which makes them interesting to study. We provide numerical evidence for closed-form expressions of higher order \(C_k(x)\) and give more examples of shapes for which such expansions are possible (including regular polygons with Neumann boundary condition, regular star polygons, and star shapes with sinusoidal boundary).
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.