{"title":"On the recovery of two function-valued coefficients in the Helmholtz equation for inverse scattering problems via neural networks","authors":"Zehui Zhou","doi":"10.1007/s10444-025-10225-z","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, deep neural networks (DNNs) have become powerful tools for solving inverse scattering problems. However, the approximation and generalization rates of DNNs for solving these problems remain largely under-explored. In this work, we introduce two types of combined DNNs (uncompressed and compressed) to reconstruct two function-valued coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different frequencies. An analysis of the approximation and generalization capabilities of the proposed neural networks for simulating the regularized pseudo-inverses of the linearized forward operators in direct scattering problems is provided. The results show that, with sufficient training data and parameters, the proposed neural networks can effectively approximate the inverse process with desirable generalization. Preliminary numerical results show the feasibility of the proposed neural networks for recovering two types of isotropic inhomogeneous media. Furthermore, the trained neural network is capable of reconstructing the isotropic representation of certain types of anisotropic media.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10225-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10225-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, deep neural networks (DNNs) have become powerful tools for solving inverse scattering problems. However, the approximation and generalization rates of DNNs for solving these problems remain largely under-explored. In this work, we introduce two types of combined DNNs (uncompressed and compressed) to reconstruct two function-valued coefficients in the Helmholtz equation for inverse scattering problems from the scattering data at two different frequencies. An analysis of the approximation and generalization capabilities of the proposed neural networks for simulating the regularized pseudo-inverses of the linearized forward operators in direct scattering problems is provided. The results show that, with sufficient training data and parameters, the proposed neural networks can effectively approximate the inverse process with desirable generalization. Preliminary numerical results show the feasibility of the proposed neural networks for recovering two types of isotropic inhomogeneous media. Furthermore, the trained neural network is capable of reconstructing the isotropic representation of certain types of anisotropic media.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.