The Kolmogorov N-width for linear transport: exact representation and the influence of the data

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2025-03-05 DOI:10.1007/s10444-025-10224-0
Florian Arbes, Constantin Greif, Karsten Urban
{"title":"The Kolmogorov N-width for linear transport: exact representation and the influence of the data","authors":"Florian Arbes,&nbsp;Constantin Greif,&nbsp;Karsten Urban","doi":"10.1007/s10444-025-10224-0","DOIUrl":null,"url":null,"abstract":"<div><p>The Kolmogorov <i>N</i>-width describes the best possible error one can achieve by elements of an <i>N</i>-dimensional linear space. Its decay has extensively been studied in approximation theory and for the solution of partial differential equations (PDEs). Particular interest has occurred within model order reduction (MOR) of parameterized PDEs, e.g., by the reduced basis method (RBM). While it is known that the <i>N</i>-width decays exponentially fast (and thus admits efficient MOR) for certain problems, there are examples of the linear transport and the wave equation, where the decay rate deteriorates to <span>\\(N^{-1/2}\\)</span>. On the other hand, it is widely accepted that a smooth parameter dependence admits a fast decay of the <i>N</i>-width. However, a detailed analysis of the influence of properties of the data (such as regularity or slope) on the rate of the <i>N</i>-width seems to be lacking. In this paper, we state that the optimal linear space is a direct sum of shift-isometric eigenspaces corresponding to the largest eigenvalues, yielding an exact representation of the <i>N</i>-width as their sum. For the linear transport problem, which is modeled by half-wave symmetric initial and boundary conditions <i>g</i>, we obtain such an optimal decomposition by sorted trigonometric functions with eigenvalues that match the Fourier coefficients of <i>g</i>. Further, for normalized <i>g</i> in the Sobolev space <span>\\(H^r\\)</span> of broken order <span>\\(r&gt;0\\)</span>, the sorted eigenfunctions give the sharp upper bound of the <i>N</i>-width, which is a reciprocal of a certain power sum. Yet, for ease, we also provide the decay <span>\\((\\pi N)^{-r}\\)</span>, obtained by the non-optimal space of ordering the trigonometric functions by frequency rather than by eigenvalue. Our theoretical investigations are complemented by numerical experiments which confirm the sharpness of our bounds and give additional quantitative insight.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10224-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10224-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Kolmogorov N-width describes the best possible error one can achieve by elements of an N-dimensional linear space. Its decay has extensively been studied in approximation theory and for the solution of partial differential equations (PDEs). Particular interest has occurred within model order reduction (MOR) of parameterized PDEs, e.g., by the reduced basis method (RBM). While it is known that the N-width decays exponentially fast (and thus admits efficient MOR) for certain problems, there are examples of the linear transport and the wave equation, where the decay rate deteriorates to \(N^{-1/2}\). On the other hand, it is widely accepted that a smooth parameter dependence admits a fast decay of the N-width. However, a detailed analysis of the influence of properties of the data (such as regularity or slope) on the rate of the N-width seems to be lacking. In this paper, we state that the optimal linear space is a direct sum of shift-isometric eigenspaces corresponding to the largest eigenvalues, yielding an exact representation of the N-width as their sum. For the linear transport problem, which is modeled by half-wave symmetric initial and boundary conditions g, we obtain such an optimal decomposition by sorted trigonometric functions with eigenvalues that match the Fourier coefficients of g. Further, for normalized g in the Sobolev space \(H^r\) of broken order \(r>0\), the sorted eigenfunctions give the sharp upper bound of the N-width, which is a reciprocal of a certain power sum. Yet, for ease, we also provide the decay \((\pi N)^{-r}\), obtained by the non-optimal space of ordering the trigonometric functions by frequency rather than by eigenvalue. Our theoretical investigations are complemented by numerical experiments which confirm the sharpness of our bounds and give additional quantitative insight.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
The Kolmogorov N-width for linear transport: exact representation and the influence of the data On the recovery of two function-valued coefficients in the Helmholtz equation for inverse scattering problems via neural networks On a non-uniform \(\alpha \)-robust IMEX-L1 mixed FEM for time-fractional PIDEs Quasi-Monte Carlo methods for mixture distributions and approximated distributions via piecewise linear interpolation Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1