Crack pattern–based machine learning prediction of residual drift capacity in damaged masonry walls

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-02 DOI:10.1111/mice.13212
Mauricio Pereira, Antonio Maria D'Altri, Stefano de Miranda, Branko Glisic
{"title":"Crack pattern–based machine learning prediction of residual drift capacity in damaged masonry walls","authors":"Mauricio Pereira, Antonio Maria D'Altri, Stefano de Miranda, Branko Glisic","doi":"10.1111/mice.13212","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method based on an ensemble of convolutional neural networks (CNNs) for the prediction of residual drift capacity in unreinforced damaged masonry walls using as only input the crack pattern. We use an accurate block-based numerical model to generate mechanically consistent crack patterns induced by external actions (earthquake-like loads and differential settlements). For a damaged masonry wall, we extract the crack width cumulative distribution, we derive a crack width exceedance curve (CWEC), and we evaluate the drift loss (DL) with respect to the undamaged wall. Numerous pairs of CWEC and DL are thus generated and used for training (and validating) an ensemble of CNNs generated via repeated <span data-altimg=\"/cms/asset/73c1e1c4-9d95-4765-b87a-eb7141100bb6/mice13212-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"159\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/mice13212-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:10939687:media:mice13212:mice13212-math-0001\" display=\"inline\" location=\"graphic/mice13212-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"k\" data-semantic-type=\"identifier\">k</mi>$k$</annotation></semantics></math></mjx-assistive-mml></mjx-container>-folding cross validation with shuffling. As a result, a method for damage prognosis (Level IV of SHM) is provided. Such method appears general, inexpensive, and able to adequately predict the DL using as only input the CWEC, providing real-time support for decision making in damaged masonry structures.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13212","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a method based on an ensemble of convolutional neural networks (CNNs) for the prediction of residual drift capacity in unreinforced damaged masonry walls using as only input the crack pattern. We use an accurate block-based numerical model to generate mechanically consistent crack patterns induced by external actions (earthquake-like loads and differential settlements). For a damaged masonry wall, we extract the crack width cumulative distribution, we derive a crack width exceedance curve (CWEC), and we evaluate the drift loss (DL) with respect to the undamaged wall. Numerous pairs of CWEC and DL are thus generated and used for training (and validating) an ensemble of CNNs generated via repeated k$k$-folding cross validation with shuffling. As a result, a method for damage prognosis (Level IV of SHM) is provided. Such method appears general, inexpensive, and able to adequately predict the DL using as only input the CWEC, providing real-time support for decision making in damaged masonry structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于裂缝模式的机器学习预测受损砌体墙体的残余漂移能力
在本文中,我们介绍了一种基于卷积神经网络(CNN)的方法,该方法仅使用裂缝模式作为输入,即可预测未加固受损砌体墙的残余漂移能力。我们使用精确的基于砌块的数值模型来生成由外部作用(地震荷载和差异沉降)引起的机械一致的裂缝模式。对于受损的砌体墙,我们提取裂缝宽度累积分布,得出裂缝宽度超限曲线(CWEC),并评估相对于未受损墙体的漂移损失(DL)。这样就生成了无数对 CWEC 和 DL,并用于训练(和验证)通过重复 k$k$ 折叠交叉验证和洗牌生成的 CNN 集合。因此,我们提供了一种损伤预报方法(SHM 的第四级)。这种方法通用性强、成本低廉,仅使用 CWEC 作为输入就能充分预测 DL,为受损砌体结构的决策提供实时支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1