Jucan Gao , Yuanwei Gou , Lei Huang , Jiazhang Lian
{"title":"Reconstitution and optimization of complex plant natural product biosynthetic pathways in microbial expression systems","authors":"Jucan Gao , Yuanwei Gou , Lei Huang , Jiazhang Lian","doi":"10.1016/j.copbio.2024.103136","DOIUrl":null,"url":null,"abstract":"<div><p>Plant natural products (PNPs) are a diverse group of chemical compounds synthesized by plants for various biological purposes and play a significant role in the fields of medicine, agriculture, and industry. In recent years, the development of synthetic biology promises the production of PNPs in microbial expression systems in a sustainable, low-cost, and large-scale manner. This review first introduces multiplex genome editing and PNP pathway assembly in microbial expression systems. Then recent technologies and examples geared toward improving PNP biosynthetic efficiency are discussed from three aspects: pathway optimization, chassis optimization, and modular coculture engineering. Finally, the review is concluded with future perspectives on the combination of machine learning and BioFoundry for the reconstitution and optimization of PNP microbial cell factories.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103136"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000727","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Plant natural products (PNPs) are a diverse group of chemical compounds synthesized by plants for various biological purposes and play a significant role in the fields of medicine, agriculture, and industry. In recent years, the development of synthetic biology promises the production of PNPs in microbial expression systems in a sustainable, low-cost, and large-scale manner. This review first introduces multiplex genome editing and PNP pathway assembly in microbial expression systems. Then recent technologies and examples geared toward improving PNP biosynthetic efficiency are discussed from three aspects: pathway optimization, chassis optimization, and modular coculture engineering. Finally, the review is concluded with future perspectives on the combination of machine learning and BioFoundry for the reconstitution and optimization of PNP microbial cell factories.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.