Tug of war: Understanding the dynamic interplay of tumor biomechanical environment on dendritic cell function

Brian Chesney Quartey , Gabriella Torres , Mei ElGindi , Aseel Alatoom , Jiranuwat Sapudom , Jeremy CM Teo
{"title":"Tug of war: Understanding the dynamic interplay of tumor biomechanical environment on dendritic cell function","authors":"Brian Chesney Quartey ,&nbsp;Gabriella Torres ,&nbsp;Mei ElGindi ,&nbsp;Aseel Alatoom ,&nbsp;Jiranuwat Sapudom ,&nbsp;Jeremy CM Teo","doi":"10.1016/j.mbm.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Dendritic cells (DCs) play a pivotal role in bridging the innate and adaptive immune systems. From their immature state, scavenging tissue for foreign antigens to uptake, then maturation, to their trafficking to lymph nodes for antigen presentation, these cells are exposed to various forms of mechanical forces. Particularly, in the tumor microenvironment, it is widely known that microenvironmental biomechanical cues are heightened. The source of these forces arises from cell-to-extracellular matrix (ECM) and cell-to-cell interactions, as well as being exposed to increased microenvironmental pressures and fluid shear forces typical of tumors. DCs then integrate these forces, influencing their immune functions through mechanotransduction. This aspect of DC biology holds alternative, but important clues to understanding suppressed/altered DC responses in tumors, or allow the artificial enhancement of DCs for therapeutic purposes. This review discusses the current understanding of DC mechanobiology from the perspectives of DCs as sensors of mechanical forces and providers of mechanical forces.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000317/pdfft?md5=29269c7dc3e815e4976547bdca32e66d&pid=1-s2.0-S2949907024000317-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dendritic cells (DCs) play a pivotal role in bridging the innate and adaptive immune systems. From their immature state, scavenging tissue for foreign antigens to uptake, then maturation, to their trafficking to lymph nodes for antigen presentation, these cells are exposed to various forms of mechanical forces. Particularly, in the tumor microenvironment, it is widely known that microenvironmental biomechanical cues are heightened. The source of these forces arises from cell-to-extracellular matrix (ECM) and cell-to-cell interactions, as well as being exposed to increased microenvironmental pressures and fluid shear forces typical of tumors. DCs then integrate these forces, influencing their immune functions through mechanotransduction. This aspect of DC biology holds alternative, but important clues to understanding suppressed/altered DC responses in tumors, or allow the artificial enhancement of DCs for therapeutic purposes. This review discusses the current understanding of DC mechanobiology from the perspectives of DCs as sensors of mechanical forces and providers of mechanical forces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拔河比赛:了解肿瘤生物力学环境对树突状细胞功能的动态影响
树突状细胞(DC)在连接先天性免疫系统和适应性免疫系统方面发挥着关键作用。从未成熟状态、清除组织中的外来抗原,到吸收、成熟,再到运输到淋巴结进行抗原呈递,这些细胞都暴露在各种形式的机械力之下。特别是在肿瘤微环境中,众所周知,微环境生物力学线索会增强。这些力的来源是细胞与细胞外基质(ECM)和细胞与细胞之间的相互作用,以及暴露于肿瘤特有的增大的微环境压力和流体剪切力。然后,直流电会整合这些力量,通过机械传导影响其免疫功能。直流电生物学的这一方面为了解肿瘤中被抑制/改变的直流电反应,或为治疗目的人工增强直流电提供了另类但重要的线索。本综述从直流电作为机械力传感器和机械力提供者的角度讨论了目前对直流电机械生物学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing mechanobiology to enhance cell therapy miRNA in mechanobiology: The exploration needs to continue Mechanotransductive N-cadherin binding induces differentiation in human neural stem cells Increased deformations are dispensable for encapsulated cell mechanoresponse in engineered bone analogs mimicking aging bone marrow Relationship between bilateral symmetry of foot posture and lower limb musculoskeletal injuries among workers engaged in physically demanding occupations: A cross-sectional investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1