Sabuj Chowdhury , Sabrina Alam , Md Didarul Alam , Fahmida Sharmin Jui
{"title":"Laser lift-off technique for applications in III-N microelectronics: A review","authors":"Sabuj Chowdhury , Sabrina Alam , Md Didarul Alam , Fahmida Sharmin Jui","doi":"10.1016/j.mee.2024.112198","DOIUrl":null,"url":null,"abstract":"<div><p>The development of flexible electronics, better heat dissipation capabilities, increased LED light extraction efficiency, and the implementation of inverted barrier N-polar high electron mobility transistor (HEMT) for power electronics are all made possible by adopting laser lift-off (LLO), a technology that enables the movement of discrete III-N elements onto any substrates which are otherwise not attainable. In this paper, we focus on evaluating the LLO mechanism, its application for III-N epilayers and devices, and assessing their structural and electronic characteristics to give an overview of the advancement in LLO technology for III-N microelectronics.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"290 ","pages":"Article 112198"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The development of flexible electronics, better heat dissipation capabilities, increased LED light extraction efficiency, and the implementation of inverted barrier N-polar high electron mobility transistor (HEMT) for power electronics are all made possible by adopting laser lift-off (LLO), a technology that enables the movement of discrete III-N elements onto any substrates which are otherwise not attainable. In this paper, we focus on evaluating the LLO mechanism, its application for III-N epilayers and devices, and assessing their structural and electronic characteristics to give an overview of the advancement in LLO technology for III-N microelectronics.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.