A faster algorithm for the Fréchet distance in 1D for the imbalanced case

Lotte Blank, Anne Driemel
{"title":"A faster algorithm for the Fréchet distance in 1D for the imbalanced case","authors":"Lotte Blank, Anne Driemel","doi":"arxiv-2404.18738","DOIUrl":null,"url":null,"abstract":"The fine-grained complexity of computing the Fr\\'echet distance has been a\ntopic of much recent work, starting with the quadratic SETH-based conditional\nlower bound by Bringmann from 2014. Subsequent work established largely the\nsame complexity lower bounds for the Fr\\'echet distance in 1D. However, the\nimbalanced case, which was shown by Bringmann to be tight in dimensions $d\\geq\n2$, was still left open. Filling in this gap, we show that a faster algorithm\nfor the Fr\\'echet distance in the imbalanced case is possible: Given two\n1-dimensional curves of complexity $n$ and $n^{\\alpha}$ for some $\\alpha \\in\n(0,1)$, we can compute their Fr\\'echet distance in $O(n^{2\\alpha} \\log^2 n + n\n\\log n)$ time. This rules out a conditional lower bound of the form\n$O((nm)^{1-\\epsilon})$ that Bringmann showed for $d \\geq 2$ and any\n$\\varepsilon>0$ in turn showing a strict separation with the setting $d=1$. At\nthe heart of our approach lies a data structure that stores a 1-dimensional\ncurve $P$ of complexity $n$, and supports queries with a curve $Q$ of\ncomplexity~$m$ for the continuous Fr\\'echet distance between $P$ and $Q$. The\ndata structure has size in $\\mathcal{O}(n\\log n)$ and uses query time in\n$\\mathcal{O}(m^2 \\log^2 n)$. Our proof uses a key lemma that is based on the\nconcept of visiting orders and may be of independent interest. We demonstrate\nthis by substantially simplifying the correctness proof of a clustering\nalgorithm by Driemel, Krivo\\v{s}ija and Sohler from 2015.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fine-grained complexity of computing the Fr\'echet distance has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the Fr\'echet distance in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions $d\geq 2$, was still left open. Filling in this gap, we show that a faster algorithm for the Fr\'echet distance in the imbalanced case is possible: Given two 1-dimensional curves of complexity $n$ and $n^{\alpha}$ for some $\alpha \in (0,1)$, we can compute their Fr\'echet distance in $O(n^{2\alpha} \log^2 n + n \log n)$ time. This rules out a conditional lower bound of the form $O((nm)^{1-\epsilon})$ that Bringmann showed for $d \geq 2$ and any $\varepsilon>0$ in turn showing a strict separation with the setting $d=1$. At the heart of our approach lies a data structure that stores a 1-dimensional curve $P$ of complexity $n$, and supports queries with a curve $Q$ of complexity~$m$ for the continuous Fr\'echet distance between $P$ and $Q$. The data structure has size in $\mathcal{O}(n\log n)$ and uses query time in $\mathcal{O}(m^2 \log^2 n)$. Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivo\v{s}ija and Sohler from 2015.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不平衡情况下一维弗雷谢特距离的快速算法
从2014年布林曼(Bringmann)基于二次SETH的条件下界开始,计算Fr\'echet距离的细粒度复杂性一直是近期工作的主题。随后的工作为一维中的Fr\'echet距离建立了大致相同的复杂度下界。然而,布林曼证明在维数$d\geq2$中很紧的不平衡情况仍然没有解决。为了填补这一空白,我们证明了在不平衡情况下可以用一种更快的算法来计算 Fr\'echet 距离:给定复杂度为 $n$ 和 $n^{\alpha}$ 的两条一维曲线,对于某个 $\alpha \in(0,1)$,我们可以在 $O(n^{2\alpha} \log^2 n + n\log n)$ 的时间内计算它们的 Fr\'echet 距离。这就排除了布林曼(Bringmann)针对$d \geq 2$和任何$\varepsilon>0$所展示的$O((nm)^{1-\epsilon})$形式的条件下限,反过来显示了与设置$d=1$的严格分离。我们方法的核心是一种数据结构,它存储复杂度为$n$的一维曲线$P$,并支持用复杂度为~$m$的曲线$Q$查询$P$与$Q$之间的连续Fr\'echet距离。数据结构的大小为$\mathcal{O}(n\log n)$,查询时间为$\mathcal{O}(m^2 \log^2 n)$。我们的证明使用了一个关键的 Lemma,它是基于访问顺序的概念,可能会引起独立的兴趣。我们通过大幅简化 Driemel、Krivo\v{s}ija 和 Sohler 在 2015 年提出的聚类算法的正确性证明来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1