On Clustering Induced Voronoi Diagrams

Danny Z. Chen, Ziyun Huang, Yangwei Liu, Jinhui Xu
{"title":"On Clustering Induced Voronoi Diagrams","authors":"Danny Z. Chen, Ziyun Huang, Yangwei Liu, Jinhui Xu","doi":"arxiv-2404.18906","DOIUrl":null,"url":null,"abstract":"In this paper, we study a generalization of the classical Voronoi diagram,\ncalled clustering induced Voronoi diagram (CIVD). Different from the\ntraditional model, CIVD takes as its sites the power set $U$ of an input set\n$P$ of objects. For each subset $C$ of $P$, CIVD uses an influence function\n$F(C,q)$ to measure the total (or joint) influence of all objects in $C$ on an\narbitrary point $q$ in the space $\\mathbb{R}^d$, and determines the\ninfluence-based Voronoi cell in $\\mathbb{R}^d$ for $C$. This generalized model\noffers a number of new features (e.g., simultaneous clustering and space\npartition) to Voronoi diagram which are useful in various new applications. We\ninvestigate the general conditions for the influence function which ensure the\nexistence of a small-size (e.g., nearly linear) approximate CIVD for a set $P$\nof $n$ points in $\\mathbb{R}^d$ for some fixed $d$. To construct CIVD, we first\npresent a standalone new technique, called approximate influence (AI)\ndecomposition, for the general CIVD problem. With only $O(n\\log n)$ time, the\nAI decomposition partitions the space $\\mathbb{R}^{d}$ into a nearly linear\nnumber of cells so that all points in each cell receive their approximate\nmaximum influence from the same (possibly unknown) site (i.e., a subset of\n$P$). Based on this technique, we develop assignment algorithms to determine a\nproper site for each cell in the decomposition and form various\n$(1-\\epsilon)$-approximate CIVDs for some small fixed $\\epsilon>0$.\nParticularly, we consider two representative CIVD problems, vector CIVD and\ndensity-based CIVD, and show that both of them admit fast assignment\nalgorithms; consequently, their $(1-\\epsilon)$-approximate CIVDs can be built\nin $O(n \\log^{\\max\\{3,d+1\\}}n)$ and $O(n \\log^{2} n)$ time, respectively.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a generalization of the classical Voronoi diagram, called clustering induced Voronoi diagram (CIVD). Different from the traditional model, CIVD takes as its sites the power set $U$ of an input set $P$ of objects. For each subset $C$ of $P$, CIVD uses an influence function $F(C,q)$ to measure the total (or joint) influence of all objects in $C$ on an arbitrary point $q$ in the space $\mathbb{R}^d$, and determines the influence-based Voronoi cell in $\mathbb{R}^d$ for $C$. This generalized model offers a number of new features (e.g., simultaneous clustering and space partition) to Voronoi diagram which are useful in various new applications. We investigate the general conditions for the influence function which ensure the existence of a small-size (e.g., nearly linear) approximate CIVD for a set $P$ of $n$ points in $\mathbb{R}^d$ for some fixed $d$. To construct CIVD, we first present a standalone new technique, called approximate influence (AI) decomposition, for the general CIVD problem. With only $O(n\log n)$ time, the AI decomposition partitions the space $\mathbb{R}^{d}$ into a nearly linear number of cells so that all points in each cell receive their approximate maximum influence from the same (possibly unknown) site (i.e., a subset of $P$). Based on this technique, we develop assignment algorithms to determine a proper site for each cell in the decomposition and form various $(1-\epsilon)$-approximate CIVDs for some small fixed $\epsilon>0$. Particularly, we consider two representative CIVD problems, vector CIVD and density-based CIVD, and show that both of them admit fast assignment algorithms; consequently, their $(1-\epsilon)$-approximate CIVDs can be built in $O(n \log^{\max\{3,d+1\}}n)$ and $O(n \log^{2} n)$ time, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于聚类诱导的沃罗诺图
本文研究的是经典沃罗诺伊图的广义化,即聚类诱导沃罗诺伊图(CIVD)。与传统模式不同的是,CIVD 以输入对象集$P$的幂集$U$为站点。对于$P$的每个子集$C$,CIVD使用影响函数$F(C,q)$来测量$C$中所有对象对空间$mathbb{R}^d$中任意点$q$的总影响(或联合影响),并确定$C$在$mathbb{R}^d$中基于影响的沃罗诺单元。这种广义模型为 Voronoi 图提供了许多新特征(如同时聚类和空间分割),这些特征在各种新应用中都很有用。我们研究了影响函数的一般条件,这些条件可确保在某个固定的 $d$ 条件下,在 $\mathbb{R}^d$ 中由 $n$ 点组成的 $P$ 集合存在小尺寸(如近似线性)的近似 CIVD。为了构建 CIVD,我们首先针对一般 CIVD 问题提出了一种独立的新技术,称为近似影响分解(AI)。只需花费 $O(n\log n)$ 时间,AI 分解就能将 $\mathbb{R}^{d}$ 空间划分为近似线性数量的单元,从而使每个单元中的所有点都能从同一个(可能是未知的)站点(即 $P$ 的子集)获得近似最大影响。基于这种技术,我们开发了分配算法,为分解中的每个单元确定合适的站点,并在某个固定的$\epsilon>0$的小范围内形成各种$(1-epsilon)$近似 CIVD。特别是,我们考虑了两个有代表性的 CIVD 问题,即向量 CIVD 和基于密度的 CIVD,并证明这两个问题都允许快速赋值算法;因此,它们的 $(1-\epsilon)$ 近似 CIVD 可以分别在 $O(n \log^{max\{3,d+1\}}n)$ 和 $O(n \log^{2} n)$ 时间内建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1