{"title":"Spontaneously integrated multicolor InGaN micro‐LEDs for spectrum‐controllable broadband light sources","authors":"Yoshinobu Matsuda, Haruyoshi Miyawaki, Mitsuru Funato, Yoichi Kawakami","doi":"10.1002/pssr.202400094","DOIUrl":null,"url":null,"abstract":"Spontaneously integrated multicolor InGaN micro‐LEDs with a micro‐stripe topography achieve selective electrical operation with four different color emissions: green, bluish‐green, bluish‐purple, and purple. The entire micro‐stripe displays broadband emissions because the stripe topography with a convex lens–like cross‐section induces a continuous emission wavelength gradient in the overgrown InGaN active layers. Since each wavelength component is distributed along the stripe direction, multiple narrow <jats:italic>p</jats:italic>‐electrodes are positioned side‐by‐side across the stripe width. This design supports selective current injection into the corresponding local areas. This work represents an important step for realizing broadband visible light emitters where individual wavelength components composing the broad spectra can be modulated and switched independently.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400094","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spontaneously integrated multicolor InGaN micro‐LEDs with a micro‐stripe topography achieve selective electrical operation with four different color emissions: green, bluish‐green, bluish‐purple, and purple. The entire micro‐stripe displays broadband emissions because the stripe topography with a convex lens–like cross‐section induces a continuous emission wavelength gradient in the overgrown InGaN active layers. Since each wavelength component is distributed along the stripe direction, multiple narrow p‐electrodes are positioned side‐by‐side across the stripe width. This design supports selective current injection into the corresponding local areas. This work represents an important step for realizing broadband visible light emitters where individual wavelength components composing the broad spectra can be modulated and switched independently.This article is protected by copyright. All rights reserved.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.