Yan Hu, Wei Li, Xuefeng Zhang, Guimei Liu, Liang Zhang
{"title":"Application of the finite analytic numerical method to a flow-dependent variational data assimilation","authors":"Yan Hu, Wei Li, Xuefeng Zhang, Guimei Liu, Liang Zhang","doi":"10.1007/s13131-023-2229-z","DOIUrl":null,"url":null,"abstract":"<p>An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix, which can be achieved by solving the advection-diffusion equation. Because of the directionality of the advection term, the discrete method needs to be chosen very carefully. The finite analytic method is an alternative scheme to solve the advection-diffusion equation. As a combination of analytical and numerical methods, it not only has high calculation accuracy but also holds the characteristic of the auto upwind. To demonstrate its ability, the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method. The more widely used upwind difference method is used as a control approach. The result indicates that the finite analytic method has higher accuracy than the upwind difference method. For the two-dimensional case, the finite analytic method still has a better performance. In the three-dimensional variational assimilation experiment, the finite analytic method can effectively improve analysis field accuracy, and its effect is significantly better than the upwind difference and the central difference method. Moreover, it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"23 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2229-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
An anisotropic diffusion filter can be used to model a flow-dependent background error covariance matrix, which can be achieved by solving the advection-diffusion equation. Because of the directionality of the advection term, the discrete method needs to be chosen very carefully. The finite analytic method is an alternative scheme to solve the advection-diffusion equation. As a combination of analytical and numerical methods, it not only has high calculation accuracy but also holds the characteristic of the auto upwind. To demonstrate its ability, the one-dimensional steady and unsteady advection-diffusion equation numerical examples are respectively solved by the finite analytic method. The more widely used upwind difference method is used as a control approach. The result indicates that the finite analytic method has higher accuracy than the upwind difference method. For the two-dimensional case, the finite analytic method still has a better performance. In the three-dimensional variational assimilation experiment, the finite analytic method can effectively improve analysis field accuracy, and its effect is significantly better than the upwind difference and the central difference method. Moreover, it is still a more effective solution method in the strong flow region where the advective-diffusion filter performs most prominently.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.