Augmented Reality Terahertz (AR-THz) Sensing and Imaging with Frequency-Modulated Continuous-Wave Radar

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Infrared, Millimeter, and Terahertz Waves Pub Date : 2024-04-30 DOI:10.1007/s10762-024-00984-z
Jean-Paul Guillet, Frédéric Fauquet, Jean Rioult
{"title":"Augmented Reality Terahertz (AR-THz) Sensing and Imaging with Frequency-Modulated Continuous-Wave Radar","authors":"Jean-Paul Guillet, Frédéric Fauquet, Jean Rioult","doi":"10.1007/s10762-024-00984-z","DOIUrl":null,"url":null,"abstract":"<p>Terahertz imaging is one of the most promising approaches for non-destructive control. An interesting approach to having cost-effective systems is to use frequency-modulated continuous wave (FMCW) radars with a raster scan configuration. Nevertheless, current systems using linear stages or robotic arms have the disadvantage of being heavy, requiring a long scan and not allowing a direct visualization of the result being measured. In addition, it is complex to evaluate the position of the measuring point on the real object, particularly if it is not flat. Here, we propose to solve these previous challenges with a portable system combining an FMCW radar with an augmented reality (AR) interface using a smartphone. This system achieves two goals: (i) first is to achieve data acquisition in the AR environment and (ii) the second is to make possible the visualization of data, even after post-processing, in the AR environment.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00984-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz imaging is one of the most promising approaches for non-destructive control. An interesting approach to having cost-effective systems is to use frequency-modulated continuous wave (FMCW) radars with a raster scan configuration. Nevertheless, current systems using linear stages or robotic arms have the disadvantage of being heavy, requiring a long scan and not allowing a direct visualization of the result being measured. In addition, it is complex to evaluate the position of the measuring point on the real object, particularly if it is not flat. Here, we propose to solve these previous challenges with a portable system combining an FMCW radar with an augmented reality (AR) interface using a smartphone. This system achieves two goals: (i) first is to achieve data acquisition in the AR environment and (ii) the second is to make possible the visualization of data, even after post-processing, in the AR environment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用频率调制连续波雷达进行太赫兹增强现实(AR-THz)传感和成像
太赫兹成像是最有前途的无损控制方法之一。使用具有光栅扫描配置的频率调制连续波(FMCW)雷达是一种具有成本效益的系统的有趣方法。然而,目前使用线性平台或机械臂的系统存在重量大、扫描时间长、无法直接看到测量结果等缺点。此外,评估测量点在实际物体上的位置也很复杂,尤其是在物体不平的情况下。在此,我们建议使用一种结合了 FMCW 雷达和使用智能手机的增强现实(AR)界面的便携式系统来解决上述难题。该系统可实现两个目标:(i) 首先是在 AR 环境中实现数据采集;(ii) 其次是在 AR 环境中实现数据的可视化,即使是在后处理之后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
期刊最新文献
Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry A 60-GHz Out-of-Phase Power Divider with WR-15 Standard Interface Based on Trapped Printed Gap Waveguide Technology Advanced Data Processing of THz-Time Domain Spectroscopy Data with Sinusoidally Moving Delay Lines Hard Rock Absorption Measurements in the W-Band Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1