Masaya Nagai, Sou Watanabe, Ryosuke Imamura, Masaaki Ashida, Kohei Shimoyama, Haobo Li, Azusa N. Hattori, Hidekazu Tanaka
{"title":"Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry","authors":"Masaya Nagai, Sou Watanabe, Ryosuke Imamura, Masaaki Ashida, Kohei Shimoyama, Haobo Li, Azusa N. Hattori, Hidekazu Tanaka","doi":"10.1007/s10762-024-01011-x","DOIUrl":null,"url":null,"abstract":"<p>We present two ideas to simplify the measurement and analysis of terahertz time-domain spectroscopic ellipsometry data of ultrathin films. The measurement is simplified by using a specially designed sample holder with mirrors, which can be mounted on a cryostat. It allows us to perform spectroscopic ellipsometry by simply inserting the holder into a conventional terahertz spectroscopy system for measurements in transmission geometry. The analysis of the obtained data is simplified by considering a single interface with a certain sheet conductivity <span>\\({\\sigma }_{s}\\)</span> (since the film thickness is significantly smaller than the wavelength of the terahertz light). We demonstrate the application of these ideas by evaluating the sheet conductivities of two perovskite rare-earth nickelate thin films in the temperature range 78–478 K. The use of this particular analytical method and the sample holder design will help to establish terahertz time-domain spectroscopic ellipsometry as a characterization technique for ultrathin films.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"38 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-01011-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present two ideas to simplify the measurement and analysis of terahertz time-domain spectroscopic ellipsometry data of ultrathin films. The measurement is simplified by using a specially designed sample holder with mirrors, which can be mounted on a cryostat. It allows us to perform spectroscopic ellipsometry by simply inserting the holder into a conventional terahertz spectroscopy system for measurements in transmission geometry. The analysis of the obtained data is simplified by considering a single interface with a certain sheet conductivity \({\sigma }_{s}\) (since the film thickness is significantly smaller than the wavelength of the terahertz light). We demonstrate the application of these ideas by evaluating the sheet conductivities of two perovskite rare-earth nickelate thin films in the temperature range 78–478 K. The use of this particular analytical method and the sample holder design will help to establish terahertz time-domain spectroscopic ellipsometry as a characterization technique for ultrathin films.
我们提出了两个简化超薄薄膜太赫兹时域光谱椭偏仪数据测量和分析的想法。通过使用专门设计的带反射镜的样品支架来简化测量,该支架可安装在低温恒温器上。只需将样品架插入传统的太赫兹光谱系统中,即可进行透射几何测量,从而实现光谱椭偏测量。考虑到单个界面具有一定的片状电导率 \({\sigma}_{s}\)(因为薄膜厚度明显小于太赫兹光的波长),可以简化对所获数据的分析。我们通过评估 78-478 K 温度范围内两种过氧化物稀土镍酸盐薄膜的片状电导率来演示这些想法的应用。使用这种特殊的分析方法和样品支架设计将有助于建立太赫兹时域光谱椭偏仪作为超薄薄膜的表征技术。
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.