Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY Aggregate (Hoboken, N.J.) Pub Date : 2024-04-30 DOI:10.1002/agt2.578
Siyuan Li, Feng Wang, Yang Chen, Wanrui Shi, Dashuai Liu, Mingyang Lv, Bin Zhao, Yi Liu, Hao Zhang
{"title":"Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment","authors":"Siyuan Li,&nbsp;Feng Wang,&nbsp;Yang Chen,&nbsp;Wanrui Shi,&nbsp;Dashuai Liu,&nbsp;Mingyang Lv,&nbsp;Bin Zhao,&nbsp;Yi Liu,&nbsp;Hao Zhang","doi":"10.1002/agt2.578","DOIUrl":null,"url":null,"abstract":"<p>Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue. Traditional antimicrobial agents like antibiotics and antimicrobial peptides (AMPs) struggle to effectively eradicate bacteria in biofilms without eliciting resistance. Herein, we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs (nAMPs) distinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species (ROS) capacity for caries treatment. On the one hand, FeOOH@Fe-Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment, resulting in the disintegration of the extracellular polymeric substance matrix and the exposure of bacteria. On the other hand, FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions, proceeding to damage membranes, disrupt metabolic pathways, and inhibit protein synthesis through the aggregated lysine and the generated ROS. Based on this antibacterial mechanism, FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate <i>Streptococcus mutans</i> and its associated biofilm, significantly impeding the progression of dental caries. Given the straightforward and cost-efficient preparation of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences, and their minimal adverse impacts on gingival/palatal tissues, major organs, and oral/gut microbiomes, our research may promote the development of novel therapeutic agents in dental health maintenance.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.578","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dental caries is one of the most prevalent and costly biofilm-induced oral diseases that causes the deterioration of the mineralized tooth tissue. Traditional antimicrobial agents like antibiotics and antimicrobial peptides (AMPs) struggle to effectively eradicate bacteria in biofilms without eliciting resistance. Herein, we demonstrate the construction of FeOOH@Fe-Lysine@Au nanostructured AMPs (nAMPs) distinguished by their AMP-like antibacterial activity and self-producing reactive oxygen species (ROS) capacity for caries treatment. On the one hand, FeOOH@Fe-Lysine@Au nAMPs can catalyze glucose oxidation to generate ROS within the cariogenic biofilm microenvironment, resulting in the disintegration of the extracellular polymeric substance matrix and the exposure of bacteria. On the other hand, FeOOH@Fe-Lysine@Au nAMPs can attach to bacterial surfaces via electrostatic attractions, proceeding to damage membranes, disrupt metabolic pathways, and inhibit protein synthesis through the aggregated lysine and the generated ROS. Based on this antibacterial mechanism, FeOOH@Fe-Lysine@Au nAMPs can effectively eradicate Streptococcus mutans and its associated biofilm, significantly impeding the progression of dental caries. Given the straightforward and cost-efficient preparation of FeOOH@Fe-Lysine@Au nAMPs compared to AMPs that require specific sequences, and their minimal adverse impacts on gingival/palatal tissues, major organs, and oral/gut microbiomes, our research may promote the development of novel therapeutic agents in dental health maintenance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于赖氨酸聚合体的纳米结构抗菌肽用于致龋生物膜微环境激活型龋病治疗
龋齿是由生物膜引起的口腔疾病中最普遍、最昂贵的疾病之一,它会导致矿化牙齿组织恶化。抗生素和抗菌肽(AMPs)等传统抗菌剂难以在不产生抗药性的情况下有效消灭生物膜中的细菌。在此,我们展示了 FeOOH@Fe-Lysine@Au 纳米结构 AMPs(nAMPs)的构建过程,这种 AMPs 具有类似 AMP 的抗菌活性和自我产生活性氧(ROS)的能力,可用于龋病治疗。一方面,FeOOH@Fe-赖氨酸@Au nAMPs 可催化葡萄糖氧化,在致龋生物膜微环境中产生 ROS,导致细胞外聚合物质基质崩解,细菌暴露。另一方面,FeOOH@Fe-赖氨酸@Au nAMPs 可通过静电吸引附着在细菌表面,进而破坏细胞膜,扰乱新陈代谢途径,并通过聚集的赖氨酸和产生的 ROS 抑制蛋白质合成。基于这种抗菌机制,FeOOH@Fe-赖氨酸@Au nAMPs 可有效根除变异链球菌及其相关的生物膜,大大阻碍龋齿的发展。与需要特定序列的 AMPs 相比,FeOOH@Fe-赖氨酸@金 nAMPs 的制备简单、成本低廉,而且对牙龈/腭部组织、主要器官和口腔/肠道微生物群的不良影响极小,因此我们的研究可能会促进牙齿健康维护领域新型治疗药物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Issue Information Inside Front Cover: Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications Inside Back Cover: Supramolecular self-assembled nanoparticles for targeted therapy of myocardial infarction by enhancing cardiomyocyte mitophagy Front Cover: Steric hindrance induced low exciton binding energy enables low-driving-force organic solar cells Back Cover: Lysine aggregates-based nanostructured antimicrobial peptides for cariogenic biofilm microenvironment-activated caries treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1