Quantum thermometry based on interferometric power

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY EPL Pub Date : 2024-04-30 DOI:10.1209/0295-5075/ad3c2f
Hongying Yang, Qiang Zheng, Ping Yue and Qijun Zhi
{"title":"Quantum thermometry based on interferometric power","authors":"Hongying Yang, Qiang Zheng, Ping Yue and Qijun Zhi","doi":"10.1209/0295-5075/ad3c2f","DOIUrl":null,"url":null,"abstract":"In the field of quantum thermometry, usually temperature is estimated by the framework of quantum metrology. In this work, an alternative approach to quantum thermometry is suggested, based on interferometric power (IP). IP is defined as the worst-case quantum Fisher information in a double-channel interferometer. Specifically, the time evolution of the IP for a two-qubit state as a probe contacting with a finite-temperature bath is considered. The IP dynamics of the probe with three kinds of initial states (i.e., entangled, separable, and mixed) strongly depend on the bath temperature. The dynamical evolution of IP would be measured experimentally, considering that the IP is a measurable quantity in the experiment. Thus, the IP dynamics can be adopted to extract the value of the bath temperature directly. In this sense, the IP could be exploited as a quantum thermometer.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3c2f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of quantum thermometry, usually temperature is estimated by the framework of quantum metrology. In this work, an alternative approach to quantum thermometry is suggested, based on interferometric power (IP). IP is defined as the worst-case quantum Fisher information in a double-channel interferometer. Specifically, the time evolution of the IP for a two-qubit state as a probe contacting with a finite-temperature bath is considered. The IP dynamics of the probe with three kinds of initial states (i.e., entangled, separable, and mixed) strongly depend on the bath temperature. The dynamical evolution of IP would be measured experimentally, considering that the IP is a measurable quantity in the experiment. Thus, the IP dynamics can be adopted to extract the value of the bath temperature directly. In this sense, the IP could be exploited as a quantum thermometer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于干涉功率的量子测温技术
在量子测温领域,通常通过量子计量学框架来估算温度。在这项工作中,提出了一种基于干涉功率(IP)的量子测温替代方法。IP 被定义为双通道干涉仪中最坏情况下的量子费舍尔信息。具体来说,研究考虑了作为探针的双量子比特态与有限温浴接触时的 IP 时间演化。具有三种初始态(即纠缠态、可分离态和混合态)的探针的 IP 动态很大程度上取决于熔池温度。考虑到 IP 是实验中可测量的量,IP 的动态演化将通过实验来测量。因此,可以采用 IP 动态直接提取浴温值。从这个意义上说,IP 可被用作量子温度计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
期刊最新文献
Tunable quantum transport in topological semimetal candidates LaxSr1-xMnSb2 Non-magnetic layers with a single symmetry-protected Dirac cone: Which additional dispersions must appear? Total free-free Gaunt factors prediction using machine learning models Prospects for the use of plasmonic vortices to control nanosystems “Causometry” of processes in arbitrary dynamical systems: Three levels of directional coupling quantifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1