Gaidaa Dogheim, Sampath Chinnam, Mohamed T. Amralla
{"title":"Lipid Nanoparticles as a Platform for miRNA and siRNA Delivery in Hepatocellular Carcinoma","authors":"Gaidaa Dogheim, Sampath Chinnam, Mohamed T. Amralla","doi":"10.2174/0115672018292331240404070236","DOIUrl":null,"url":null,"abstract":": Liver cancer is the sixth most common cancer and the fourth leading cause of death worldwide. Hepatocellular carcinoma (HCC) comprises 75-80% of liver cancer cases. Therapeutic strategies for HCC are available and have been shown to prolong survival but not treat HCC. Gene expression and regulation are responsible for the pathogenesis and progression of HCC. Altering these genetic networks can impact cellular behaviors and in turn cure HCC. Single-stranded and double-stranded non-coding ribonucleic acid known as microRNA and small interfering RNA, respectively have been investigated as possible therapeutic options. Currently, efficient delivery systems that ensure cell-specific targeting and efficient transfection into tumor cells are still under investigation. Viral vectors have been studied extensively, but immunogenicity hinders their use as delivery systems. Non-viral vectors which include inorganic, lipid, or polymeric nanoparticles are promising delivery systems. However, there are a lot of challenges during the formulation of such systems to ensure efficient and specific delivery. In vitro and in vivo studies have investigated different LNPs to deliver miRNA or siRNA. In this review, we highlight the role of LNPs as a delivery system for miRNA and siRNA in HCC in addition to the latest results achieved using this approach.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115672018292331240404070236","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
: Liver cancer is the sixth most common cancer and the fourth leading cause of death worldwide. Hepatocellular carcinoma (HCC) comprises 75-80% of liver cancer cases. Therapeutic strategies for HCC are available and have been shown to prolong survival but not treat HCC. Gene expression and regulation are responsible for the pathogenesis and progression of HCC. Altering these genetic networks can impact cellular behaviors and in turn cure HCC. Single-stranded and double-stranded non-coding ribonucleic acid known as microRNA and small interfering RNA, respectively have been investigated as possible therapeutic options. Currently, efficient delivery systems that ensure cell-specific targeting and efficient transfection into tumor cells are still under investigation. Viral vectors have been studied extensively, but immunogenicity hinders their use as delivery systems. Non-viral vectors which include inorganic, lipid, or polymeric nanoparticles are promising delivery systems. However, there are a lot of challenges during the formulation of such systems to ensure efficient and specific delivery. In vitro and in vivo studies have investigated different LNPs to deliver miRNA or siRNA. In this review, we highlight the role of LNPs as a delivery system for miRNA and siRNA in HCC in addition to the latest results achieved using this approach.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.