Li Wang, Qingrong Xie, Shengfa Yang, Guanbing Xu, Wei Yang, Jiang Hu
{"title":"Dam-induced difference of fish habitat distribution in the fluctuating backwater zone of the Three Gorges Dam","authors":"Li Wang, Qingrong Xie, Shengfa Yang, Guanbing Xu, Wei Yang, Jiang Hu","doi":"10.1002/eco.2657","DOIUrl":null,"url":null,"abstract":"<p>Changes in fish habitat induced by dam construction in the downstream river have been well documented in an increasing body of literature. Fish habitats in the backwater zone of dams have undergone dramatic changes, which have still remained poorly understood. This study aims to provide a more complete understanding of fish habitat distribution and clarify fish habitat utilization patterns in the upstream dam in order to adopt effective remediation activities. This study was conducted in the Three Gorges Dam (TGD) as it is the world's largest installed capacity hydropower station, with a backwater zone length of about 660 km. Four major Chinese carp (FMCC) were selected as target fish species, and fish habitat distribution upstream of TGD was assessed by integrating the swimming ability and environmental preference of different fish species into their critical life stages. Assessment results at different life stages of the target fish species showed that June was a critical period for spawning activities FMCC in the fluctuating backwater zone of TGD. The riverbank was an important feeding habitat for FMCC, and the high-velocity flow in the centre of the channel exceeded the limits of the swimming ability of target fish. The fish habitat distribution in the fluctuating backwater zone of TGD was heavily affected by runoff from April to September and by dam operation from October to March of the next year. This work provide valuable information about river conservation and management in the upstream of TGD.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"17 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2657","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in fish habitat induced by dam construction in the downstream river have been well documented in an increasing body of literature. Fish habitats in the backwater zone of dams have undergone dramatic changes, which have still remained poorly understood. This study aims to provide a more complete understanding of fish habitat distribution and clarify fish habitat utilization patterns in the upstream dam in order to adopt effective remediation activities. This study was conducted in the Three Gorges Dam (TGD) as it is the world's largest installed capacity hydropower station, with a backwater zone length of about 660 km. Four major Chinese carp (FMCC) were selected as target fish species, and fish habitat distribution upstream of TGD was assessed by integrating the swimming ability and environmental preference of different fish species into their critical life stages. Assessment results at different life stages of the target fish species showed that June was a critical period for spawning activities FMCC in the fluctuating backwater zone of TGD. The riverbank was an important feeding habitat for FMCC, and the high-velocity flow in the centre of the channel exceeded the limits of the swimming ability of target fish. The fish habitat distribution in the fluctuating backwater zone of TGD was heavily affected by runoff from April to September and by dam operation from October to March of the next year. This work provide valuable information about river conservation and management in the upstream of TGD.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.