Filling the Gaps: A Bayesian Mixture Model for Imputing Missing Soil Water Content Data

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY Ecohydrology Pub Date : 2025-02-10 DOI:10.1002/eco.70004
Kiona Ogle, Emma Reich, Kimberly Samuels-Crow, Marcy Litvak, John B. Bradford, Daniel R. Schlaepfer, Megan Devan
{"title":"Filling the Gaps: A Bayesian Mixture Model for Imputing Missing Soil Water Content Data","authors":"Kiona Ogle,&nbsp;Emma Reich,&nbsp;Kimberly Samuels-Crow,&nbsp;Marcy Litvak,&nbsp;John B. Bradford,&nbsp;Daniel R. Schlaepfer,&nbsp;Megan Devan","doi":"10.1002/eco.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil water content (SWC) data are central to evaluating how soil moisture varies over time and space and influences critical plant and ecosystem functions, especially in water-limited drylands. However, sensors that record SWC at high frequencies often malfunction, leading to incomplete timeseries and limiting our understanding of dryland ecosystem dynamics. We developed an analytical approach to impute missing SWC data, which we tested at six eddy flux tower sites along an elevation gradient in the southwestern United States. We impute missing data as a mixture of linearly interpolated SWC between the observed endpoints of a missing data gap and SWC simulated by an ecosystem water balance model (SOILWAT2). Within a Bayesian framework, we allowed the relative utility (mixture weight) of each component (linearly interpolated vs. SOILWAT2) to vary by depth, site and gap characteristics. We explored “fixed” weights versus “dynamic” weights that vary as a function of cumulative precipitation, average temperature, and time since the start of the gap. Both models estimated missing SWC data well (<i>R</i><sup>2</sup> = 0.70–0.88 vs. 0.75–0.91 for fixed vs. dynamic weights, respectively), but the utility of linearly interpolated versus SOILWAT2 values depended on site and depth. SOILWAT2 was more useful for more arid sites, shallower depths, longer and warmer gaps and gaps that received greater precipitation. Overall, the mixture model reliably gap-fills SWC, while lending insight into processes governing SWC dynamics. This approach to impute missing data could be adapted to accommodate more than two mixture components and other types of environmental timeseries.</p>\n </div>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.70004","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil water content (SWC) data are central to evaluating how soil moisture varies over time and space and influences critical plant and ecosystem functions, especially in water-limited drylands. However, sensors that record SWC at high frequencies often malfunction, leading to incomplete timeseries and limiting our understanding of dryland ecosystem dynamics. We developed an analytical approach to impute missing SWC data, which we tested at six eddy flux tower sites along an elevation gradient in the southwestern United States. We impute missing data as a mixture of linearly interpolated SWC between the observed endpoints of a missing data gap and SWC simulated by an ecosystem water balance model (SOILWAT2). Within a Bayesian framework, we allowed the relative utility (mixture weight) of each component (linearly interpolated vs. SOILWAT2) to vary by depth, site and gap characteristics. We explored “fixed” weights versus “dynamic” weights that vary as a function of cumulative precipitation, average temperature, and time since the start of the gap. Both models estimated missing SWC data well (R2 = 0.70–0.88 vs. 0.75–0.91 for fixed vs. dynamic weights, respectively), but the utility of linearly interpolated versus SOILWAT2 values depended on site and depth. SOILWAT2 was more useful for more arid sites, shallower depths, longer and warmer gaps and gaps that received greater precipitation. Overall, the mixture model reliably gap-fills SWC, while lending insight into processes governing SWC dynamics. This approach to impute missing data could be adapted to accommodate more than two mixture components and other types of environmental timeseries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
期刊最新文献
Filling the Gaps: A Bayesian Mixture Model for Imputing Missing Soil Water Content Data Effect of Forest Management Practices on Water Balance Across a Water–Energy Gradient in the Upper Kings River Basin, USA Substantial Decline in the Groundwater in the Ten Kongduis Basin in the Loess Plateau During 2001–2020 Ecohydrological Engineering for the Sustainable Management of Water–Biota Interactions Effect of Groundwater Flow on Microbial Activity in a Porous Limestone Groundwater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1