Kiona Ogle, Emma Reich, Kimberly Samuels-Crow, Marcy Litvak, John B. Bradford, Daniel R. Schlaepfer, Megan Devan
{"title":"Filling the Gaps: A Bayesian Mixture Model for Imputing Missing Soil Water Content Data","authors":"Kiona Ogle, Emma Reich, Kimberly Samuels-Crow, Marcy Litvak, John B. Bradford, Daniel R. Schlaepfer, Megan Devan","doi":"10.1002/eco.70004","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil water content (SWC) data are central to evaluating how soil moisture varies over time and space and influences critical plant and ecosystem functions, especially in water-limited drylands. However, sensors that record SWC at high frequencies often malfunction, leading to incomplete timeseries and limiting our understanding of dryland ecosystem dynamics. We developed an analytical approach to impute missing SWC data, which we tested at six eddy flux tower sites along an elevation gradient in the southwestern United States. We impute missing data as a mixture of linearly interpolated SWC between the observed endpoints of a missing data gap and SWC simulated by an ecosystem water balance model (SOILWAT2). Within a Bayesian framework, we allowed the relative utility (mixture weight) of each component (linearly interpolated vs. SOILWAT2) to vary by depth, site and gap characteristics. We explored “fixed” weights versus “dynamic” weights that vary as a function of cumulative precipitation, average temperature, and time since the start of the gap. Both models estimated missing SWC data well (<i>R</i><sup>2</sup> = 0.70–0.88 vs. 0.75–0.91 for fixed vs. dynamic weights, respectively), but the utility of linearly interpolated versus SOILWAT2 values depended on site and depth. SOILWAT2 was more useful for more arid sites, shallower depths, longer and warmer gaps and gaps that received greater precipitation. Overall, the mixture model reliably gap-fills SWC, while lending insight into processes governing SWC dynamics. This approach to impute missing data could be adapted to accommodate more than two mixture components and other types of environmental timeseries.</p>\n </div>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.70004","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil water content (SWC) data are central to evaluating how soil moisture varies over time and space and influences critical plant and ecosystem functions, especially in water-limited drylands. However, sensors that record SWC at high frequencies often malfunction, leading to incomplete timeseries and limiting our understanding of dryland ecosystem dynamics. We developed an analytical approach to impute missing SWC data, which we tested at six eddy flux tower sites along an elevation gradient in the southwestern United States. We impute missing data as a mixture of linearly interpolated SWC between the observed endpoints of a missing data gap and SWC simulated by an ecosystem water balance model (SOILWAT2). Within a Bayesian framework, we allowed the relative utility (mixture weight) of each component (linearly interpolated vs. SOILWAT2) to vary by depth, site and gap characteristics. We explored “fixed” weights versus “dynamic” weights that vary as a function of cumulative precipitation, average temperature, and time since the start of the gap. Both models estimated missing SWC data well (R2 = 0.70–0.88 vs. 0.75–0.91 for fixed vs. dynamic weights, respectively), but the utility of linearly interpolated versus SOILWAT2 values depended on site and depth. SOILWAT2 was more useful for more arid sites, shallower depths, longer and warmer gaps and gaps that received greater precipitation. Overall, the mixture model reliably gap-fills SWC, while lending insight into processes governing SWC dynamics. This approach to impute missing data could be adapted to accommodate more than two mixture components and other types of environmental timeseries.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.