Analyzing Robustness of Automatic Scientific Claim Verification Tools against Adversarial Rephrasing Attacks

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Intelligent Systems and Technology Pub Date : 2024-05-02 DOI:10.1145/3663481
Janet Layne, Qudrat E Alahy Ratul, Edoardo Serra, Sushil Jajodia
{"title":"Analyzing Robustness of Automatic Scientific Claim Verification Tools against Adversarial Rephrasing Attacks","authors":"Janet Layne, Qudrat E Alahy Ratul, Edoardo Serra, Sushil Jajodia","doi":"10.1145/3663481","DOIUrl":null,"url":null,"abstract":"<p>The coronavirus pandemic has fostered an explosion of misinformation about the disease, including the risk and effectiveness of vaccination. AI tools for automatic Scientific Claim Verification (SCV) can be crucial to defeat misinformation campaigns spreading through social media channels. However, over the past years, many concerns have been raised about the robustness of AI to adversarial attacks, and the field of automatic scientific claim verification is not exempt. The risk is that such SCV tools may reinforce and legitimize the spread of fake scientific claims rather than refute them. This paper investigates the problem of generating adversarial attacks for SCV tools and shows that it is far more difficult than the generic NLP adversarial attack problem. The current NLP adversarial attack generators, when applied to SCV, often generate modified claims with entirely different meaning from the original. Even when the meaning is preserved, the modification of the generated claim is too simplistic (only a single word is changed), leaving many weaknesses of the SCV tools undiscovered. We propose T5-ParEvo, an iterative evolutionary attack generator, that is able to generate more complex and creative attacks while better preserving the semantics of the original claim. Using detailed quantitative and qualitative analysis, we demonstrate the efficacy of T5-ParEvo in comparison with existing attack generators.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"25 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663481","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The coronavirus pandemic has fostered an explosion of misinformation about the disease, including the risk and effectiveness of vaccination. AI tools for automatic Scientific Claim Verification (SCV) can be crucial to defeat misinformation campaigns spreading through social media channels. However, over the past years, many concerns have been raised about the robustness of AI to adversarial attacks, and the field of automatic scientific claim verification is not exempt. The risk is that such SCV tools may reinforce and legitimize the spread of fake scientific claims rather than refute them. This paper investigates the problem of generating adversarial attacks for SCV tools and shows that it is far more difficult than the generic NLP adversarial attack problem. The current NLP adversarial attack generators, when applied to SCV, often generate modified claims with entirely different meaning from the original. Even when the meaning is preserved, the modification of the generated claim is too simplistic (only a single word is changed), leaving many weaknesses of the SCV tools undiscovered. We propose T5-ParEvo, an iterative evolutionary attack generator, that is able to generate more complex and creative attacks while better preserving the semantics of the original claim. Using detailed quantitative and qualitative analysis, we demonstrate the efficacy of T5-ParEvo in comparison with existing attack generators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析自动科学主张验证工具在对抗性改写攻击时的鲁棒性
冠状病毒大流行引发了有关该疾病(包括疫苗接种的风险和效果)的错误信息爆炸。用于自动科学索赔验证(SCV)的人工智能工具对于战胜通过社交媒体渠道传播的错误信息至关重要。然而,在过去几年中,人们对人工智能是否能抵御对抗性攻击提出了许多担忧,自动科学主张验证领域也不例外。风险在于,此类 SCV 工具可能会强化虚假科学主张的传播并使之合法化,而不是对其进行反驳。本文研究了为SCV工具生成对抗攻击的问题,结果表明它比一般的NLP对抗攻击问题要难得多。当前的 NLP 对抗性攻击生成器在应用于 SCV 时,往往会生成与原始含义完全不同的修改后的声明。即使保留了原意,生成的索赔修改也过于简单(只修改了一个单词),导致 SCV 工具的许多弱点未被发现。我们提出了一种迭代进化攻击生成器 T5-ParEvo,它能够生成更复杂、更有创意的攻击,同时更好地保留原始索赔的语义。通过详细的定量和定性分析,我们证明了 T5-ParEvo 与现有攻击生成器相比的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
期刊最新文献
Aspect-enhanced Explainable Recommendation with Multi-modal Contrastive Learning The Social Cognition Ability Evaluation of LLMs: A Dynamic Gamified Assessment and Hierarchical Social Learning Measurement Approach Explaining Neural News Recommendation with Attributions onto Reading Histories Misinformation Resilient Search Rankings with Webgraph-based Interventions Privacy-Preserving and Diversity-Aware Trust-based Team Formation in Online Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1