Large-Area Near-Infrared Emission Enhancement on Single Upconversion Nanoparticles by Metal Nanohole Array

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-05-06 DOI:10.1021/acs.nanolett.4c01016
Xiaomiao Li, Yao Wang, Jinlong Shi, Zinan Zhao, Dajing Wang, Ziyuan Chen, Long Cheng, Guang-Hong Lu, Yusen Liang, Hao Dong*, Xuchen Shan, Baolei Liu, Chaohao Chen, Yongtao Liu, Famin Liu, Ling-Dong Sun, Xiaolan Zhong* and Fan Wang*, 
{"title":"Large-Area Near-Infrared Emission Enhancement on Single Upconversion Nanoparticles by Metal Nanohole Array","authors":"Xiaomiao Li,&nbsp;Yao Wang,&nbsp;Jinlong Shi,&nbsp;Zinan Zhao,&nbsp;Dajing Wang,&nbsp;Ziyuan Chen,&nbsp;Long Cheng,&nbsp;Guang-Hong Lu,&nbsp;Yusen Liang,&nbsp;Hao Dong*,&nbsp;Xuchen Shan,&nbsp;Baolei Liu,&nbsp;Chaohao Chen,&nbsp;Yongtao Liu,&nbsp;Famin Liu,&nbsp;Ling-Dong Sun,&nbsp;Xiaolan Zhong* and Fan Wang*,&nbsp;","doi":"10.1021/acs.nanolett.4c01016","DOIUrl":null,"url":null,"abstract":"<p >Single lanthanide (Ln) ion doped upconversion nanoparticles (UCNPs) exhibit great potential for biomolecule sensing and counting. Plasmonic structures can improve the emission efficiency of single UCNPs by modulating the energy transferring process. Yet, achieving robust and large-area single UCNP emission modulation remains a challenge, which obstructs investigation and application of single UCNPs. Here, we present a strategy using metal nanohole arrays (NHAs) to achieve energy-transfer modulation on single UCNPs simultaneously within large-area plasmonic structures. By coupling surface plasmon polaritons (SPPs) with higher-intermediate state (<sup>1</sup>D<sub>2</sub> → <sup>3</sup>F<sub>3</sub>, <sup>1</sup>D<sub>2</sub> → <sup>3</sup>H<sub>4</sub>) transitions, we achieved a remarkable up to 10-fold enhancement in 800 nm emission, surpassing the conventional approach of coupling SPPs with an intermediate ground state (<sup>3</sup>H<sub>4</sub> → <sup>3</sup>H<sub>6</sub>). We numerically simulate the electrical field distribution and reveal that luminescent enhancement is robust and insensitive to the exact location of particles. It is anticipated that the strategy provides a platform for widely exploring applications in single-particle quantitative biosensing.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"24 19","pages":"5831–5837"},"PeriodicalIF":9.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single lanthanide (Ln) ion doped upconversion nanoparticles (UCNPs) exhibit great potential for biomolecule sensing and counting. Plasmonic structures can improve the emission efficiency of single UCNPs by modulating the energy transferring process. Yet, achieving robust and large-area single UCNP emission modulation remains a challenge, which obstructs investigation and application of single UCNPs. Here, we present a strategy using metal nanohole arrays (NHAs) to achieve energy-transfer modulation on single UCNPs simultaneously within large-area plasmonic structures. By coupling surface plasmon polaritons (SPPs) with higher-intermediate state (1D23F3, 1D23H4) transitions, we achieved a remarkable up to 10-fold enhancement in 800 nm emission, surpassing the conventional approach of coupling SPPs with an intermediate ground state (3H43H6). We numerically simulate the electrical field distribution and reveal that luminescent enhancement is robust and insensitive to the exact location of particles. It is anticipated that the strategy provides a platform for widely exploring applications in single-particle quantitative biosensing.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属纳米孔阵列对单个上转换纳米粒子的大面积近红外发射增强作用
单个掺杂镧系元素(Ln)离子的上转换纳米粒子(UCNPs)在生物分子传感和计数方面具有巨大潜力。质子结构可通过调节能量传递过程提高单个 UCNPs 的发射效率。然而,实现稳健的大面积单 UCNP 发射调制仍然是一个挑战,这阻碍了单 UCNP 的研究和应用。在这里,我们提出了一种利用金属纳米孔阵列(NHA)在大面积等离子体结构中同时实现单个 UCNPs 能量转移调制的策略。通过将表面等离子体极化子(SPPs)与更高的中间态(1D2 → 3F3、1D2 → 3H4)跃迁耦合,我们实现了 800 纳米发射率高达 10 倍的显著增强,超过了将 SPPs 与中间基态(3H4 → 3H6)耦合的传统方法。我们对电场分布进行了数值模拟,结果表明,发光增强效果很强,而且对粒子的确切位置不敏感。预计该策略将为广泛探索单颗粒定量生物传感的应用提供一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Interface-Engineered Manufacturing of Gradient Wood with Heterogeneous Structure for Lightweight and Sustainable Structural Materials Active Physics-Informed Deep Learning: Surrogate Modeling for Nonplanar Wavefront Excitation of Topological Nanophotonic Devices Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO4 Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries Anisotropic Raman Scattering and Lattice Orientation Identification of 2M-WS2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1