{"title":"Interface-Engineered Manufacturing of Gradient Wood with Heterogeneous Structure for Lightweight and Sustainable Structural Materials","authors":"Tao Zhang, Juya Zhu, Liangke Lin, Jingang Wang, Yutian Guo, Qi Wang, Pei Yang, Weimin Chen, Minzhi Chen, Xiaoyan Zhou","doi":"10.1021/acs.nanolett.4c05185","DOIUrl":null,"url":null,"abstract":"Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls. The resulting spatially heterogeneous structure, induced by surface densification, effectively enhances the mechanical strength of the gradient wood by mitigating strain localization and minimizing damage accumulation. Gradient wood demonstrates a high flexural strength (193.24 ± 12.16 MPa), compressive strength (91.18 ± 2.82 MPa), low density (0.77 g/cm<sup>3</sup>), and excellent fatigue resistance. Moreover, the dense structure eliminates gaps between wood lumens at the surface of the gradient wood, effectively preventing oxygen infiltration. This gradient wood, characterized by high strength and resistance to combustion, holds significant potential for applications in advanced engineering structures fields.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"37 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05185","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls. The resulting spatially heterogeneous structure, induced by surface densification, effectively enhances the mechanical strength of the gradient wood by mitigating strain localization and minimizing damage accumulation. Gradient wood demonstrates a high flexural strength (193.24 ± 12.16 MPa), compressive strength (91.18 ± 2.82 MPa), low density (0.77 g/cm3), and excellent fatigue resistance. Moreover, the dense structure eliminates gaps between wood lumens at the surface of the gradient wood, effectively preventing oxygen infiltration. This gradient wood, characterized by high strength and resistance to combustion, holds significant potential for applications in advanced engineering structures fields.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.