Conversion of food waste into energy and value-added products: a review

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2024-05-06 DOI:10.1007/s10311-024-01742-2
Rekha Kumari, Asha Singh, Rozi Sharma, Piyush Malaviya
{"title":"Conversion of food waste into energy and value-added products: a review","authors":"Rekha Kumari,&nbsp;Asha Singh,&nbsp;Rozi Sharma,&nbsp;Piyush Malaviya","doi":"10.1007/s10311-024-01742-2","DOIUrl":null,"url":null,"abstract":"<div><p>Food waste production reaches actually about 1.3 billion tonnes per year, corresponding to the emission of 3.3 billion tonnes equivalent of CO<sub>2</sub>, thus calling for improved recycling. Here we review food waste conversion into energy and products such as biohydrogen, biogas, biofuel, biodiesel, biochar, bioplastics, fertilizers, animal feed, organic acids, enzymes, and proteins. Food waste can be treated by incineration, pyrolysis, composting, anaerobic digestion, hydrothermal carbonization, and landfilling. Properties of food waste influence the efficiency of conversion.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1759 - 1790"},"PeriodicalIF":15.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01742-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Food waste production reaches actually about 1.3 billion tonnes per year, corresponding to the emission of 3.3 billion tonnes equivalent of CO2, thus calling for improved recycling. Here we review food waste conversion into energy and products such as biohydrogen, biogas, biofuel, biodiesel, biochar, bioplastics, fertilizers, animal feed, organic acids, enzymes, and proteins. Food waste can be treated by incineration, pyrolysis, composting, anaerobic digestion, hydrothermal carbonization, and landfilling. Properties of food waste influence the efficiency of conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将厨余垃圾转化为能源和增值产品:综述
食物垃圾的实际年产量约为 13 亿吨,相当于排放 33 亿吨二氧化碳当量,因此需要改进回收利用。在此,我们将探讨如何将厨余垃圾转化为能源和产品,如生物氢、沼气、生物燃料、生物柴油、生物炭、生物塑料、肥料、动物饲料、有机酸、酶和蛋白质。厨余垃圾可以通过焚烧、热解、堆肥、厌氧消化、热液碳化和填埋等方式进行处理。厨余垃圾的特性会影响转化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Hydrothermal liquefaction for producing liquid fuels and chemicals from biomass-derived platform compounds: a review Iron-modified biochar for enhanced removal of ciprofloxacin and amoxicillin in wastewater Possible formation of long-lived photo-oxidants by photolysis of organic matter phenols in sunlit waters Microplastics alter crystal growth in coral skeleton structures Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1