{"title":"Firefighting aqueous film forming foam composition, properties and toxicity: a review","authors":"Pragya Malik, Durgesh Nandini, Bijay P. Tripathi","doi":"10.1007/s10311-024-01739-x","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming and urbanization are likely to increase fires in natural and urbanized areas, requiring advanced fire management techniques such as the use of aqueous film forming foams. However, these foams contains in particular toxic fluorinated compounds that belongs to the class of the so-called ‘forever chemicals’. Here we review aqueous film forming foams with focus on classification, film forming, composition, toxicity, and standards. Foams are classified into aqueous film forming foams, alcohol-resistant foams, and fluoroprotein foams. Foams contain hydrocarbon surfactants, fluorosurfactants, organic solvents, and additives such as pH buffers, stabilizers, salts, corrosion inhibitors, and anti-freeze agents. Firefighting foams are aggregates of small bubbles that efficiently combat liquid fuel fires by forming a vapor-suppressing blanket over the fuel surface. Aqueous film forming foams contain 2–15% of stable perfluorinated molecules. Concerning toxicity, perfluorooctanoic acid has a half-life of more than five years in adult humans. Alternative compounds such as perfluorobutane sulfonate has a shorter half-life of 45 days in adult humans, yet its impact on soil and aquatic ecosystems is not fully understood. The proprietary nature of the aqueous film forming foam formulations is a challenge in developing sustainable firefighting foams.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2013 - 2033"},"PeriodicalIF":15.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01739-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming and urbanization are likely to increase fires in natural and urbanized areas, requiring advanced fire management techniques such as the use of aqueous film forming foams. However, these foams contains in particular toxic fluorinated compounds that belongs to the class of the so-called ‘forever chemicals’. Here we review aqueous film forming foams with focus on classification, film forming, composition, toxicity, and standards. Foams are classified into aqueous film forming foams, alcohol-resistant foams, and fluoroprotein foams. Foams contain hydrocarbon surfactants, fluorosurfactants, organic solvents, and additives such as pH buffers, stabilizers, salts, corrosion inhibitors, and anti-freeze agents. Firefighting foams are aggregates of small bubbles that efficiently combat liquid fuel fires by forming a vapor-suppressing blanket over the fuel surface. Aqueous film forming foams contain 2–15% of stable perfluorinated molecules. Concerning toxicity, perfluorooctanoic acid has a half-life of more than five years in adult humans. Alternative compounds such as perfluorobutane sulfonate has a shorter half-life of 45 days in adult humans, yet its impact on soil and aquatic ecosystems is not fully understood. The proprietary nature of the aqueous film forming foam formulations is a challenge in developing sustainable firefighting foams.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.