Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids.

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Natural Product Reports Pub Date : 2024-05-07 DOI:10.1039/d4np00016a
Zhen-Xi Niu, Ya-Tao Wang, Jun-Feng Wang
{"title":"Recent advances in total synthesis of protoberberine and chiral tetrahydroberberine alkaloids.","authors":"Zhen-Xi Niu, Ya-Tao Wang, Jun-Feng Wang","doi":"10.1039/d4np00016a","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4np00016a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: Up to 2024Due to the widespread distribution of protoberberine alkaloids (PBs) and tetrahydroberberine alkaloids (THPBs) in nature, coupled with their myriad unique physiological activities, they have garnered considerable attention from medical practitioners. Over the past few decades, synthetic chemists have devised various total synthesis methods to attain these structures, continually expanding reaction pathways to achieve more efficient synthetic strategies. Simultaneously, the chiral construction of THPBs has become a focal point. In this comprehensive review, we categorically summarized the developmental trajectory of the total synthesis of these alkaloids based on the core closure strategies of protoberberine and tetrahydroberberine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原小檗碱和手性四氢小檗碱全合成的最新进展。
覆盖范围:由于原小檗碱(PBs)和四氢小檗碱(THPBs)在自然界中广泛分布,再加上它们具有无数独特的生理活性,因此受到了医学工作者的极大关注。在过去的几十年里,合成化学家们设计了各种全合成方法来获得这些结构,并不断扩大反应途径,以实现更高效的合成策略。与此同时,THPB 的手性构建也成为了一个焦点。在这篇综述中,我们以原小檗碱和四氢小檗碱的核心封闭策略为基础,分类总结了这些生物碱全合成的发展轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
期刊最新文献
Hot off the Press. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Isolation, biological activity, and synthesis of isoquinoline alkaloids. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Chemical case studies from natural products of recent interest in the crop protection industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1