Spatiotemporal Deep Learning-Based Cine Loop Quality Filter for Handheld Point-of-Care Echocardiography

Rashid Al Mukaddim;Emily MacKay;Nils Gessert;Ramon Erkamp;Shriram Sethuraman;Jonathan Sutton;Shyam Bharat;Melanie Jutras;Cristiana Baloescu;Christopher L Moore;Balasundar I. Raju
{"title":"Spatiotemporal Deep Learning-Based Cine Loop Quality Filter for Handheld Point-of-Care Echocardiography","authors":"Rashid Al Mukaddim;Emily MacKay;Nils Gessert;Ramon Erkamp;Shriram Sethuraman;Jonathan Sutton;Shyam Bharat;Melanie Jutras;Cristiana Baloescu;Christopher L Moore;Balasundar I. Raju","doi":"10.1109/TUFFC.2024.3396796","DOIUrl":null,"url":null,"abstract":"The reliability of automated image interpretation of point-of-care (POC) echocardiography scans depends on the quality of the acquired ultrasound data. This work reports on the development and validation of spatiotemporal deep learning models to assess the suitability of input ultrasound cine loops collected using a handheld echocardiography device for processing by an automated quantification algorithm (e.g., ejection fraction (EF) estimation). POC echocardiograms (\n<inline-formula> <tex-math>${n} = 885$ </tex-math></inline-formula>\n DICOM cine loops from 175 patients) from two sites were collected using a handheld ultrasound device and annotated for image quality at the frame level. Attributes of high-quality frames for left ventricular (LV) quantification included a temporally stable LV, reasonable coverage of LV borders, and good contrast between the borders and chamber. Attributes of low-quality frames included temporal instability of the LV and/or imaging artifacts (e.g., lack of contrast, haze, reverberation, and acoustic shadowing). Three different neural network architectures were investigated: 1) frame-level convolutional neural network (CNN) which operates on individual echo frames (VectorCNN); 2) single-stream sequence-level CNN which operates on a sequence of echo frames [VectorCNN + long short-term memory (LSTM)]; and 3) two-stream sequence-level CNNs which operate on a sequence of echo and optical flow frames (VectorCNN + LSTM + Average, VectorCNN + LSTM + MinMax, and VectorCNN + LSTM + ConvPool). Evaluation on a sequestered test dataset containing 76 DICOM cine loops with 16 914 frames showed that VectorCNN + LSTM can effectively utilize both spatial and temporal information to regress the quality of an input frame (accuracy: 0.925, sensitivity =0.860, and specificity =0.952), compared to the frame-level VectorCNN that only utilizes spatial information in that frame (accuracy: 0.903, sensitivity =0.791, and specificity =0.949). Furthermore, an independent sample t-test indicated that the cine loops classified to be of adequate quality by the VectorCNN + LSTM model had a statistically significant lower bias in the automatically estimated EF (mean bias \n<inline-formula> <tex-math>$= -3.73$ </tex-math></inline-formula>\n% \n<inline-formula> <tex-math>$\\pm ~7.46$ </tex-math></inline-formula>\n%, versus a clinically obtained reference EF) compared to the loops classified as inadequate (mean bias \n<inline-formula> <tex-math>$= -15.92$ </tex-math></inline-formula>\n% \n<inline-formula> <tex-math>$\\pm ~12.17$ </tex-math></inline-formula>\n%) (\n<inline-formula> <tex-math>${p} = 0.007$ </tex-math></inline-formula>\n). Thus, cine loop stratification using the proposed spatiotemporal CNN model improves the reliability of automated POC echocardiography image interpretation.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 11","pages":"1577-1587"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10517992/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The reliability of automated image interpretation of point-of-care (POC) echocardiography scans depends on the quality of the acquired ultrasound data. This work reports on the development and validation of spatiotemporal deep learning models to assess the suitability of input ultrasound cine loops collected using a handheld echocardiography device for processing by an automated quantification algorithm (e.g., ejection fraction (EF) estimation). POC echocardiograms ( ${n} = 885$ DICOM cine loops from 175 patients) from two sites were collected using a handheld ultrasound device and annotated for image quality at the frame level. Attributes of high-quality frames for left ventricular (LV) quantification included a temporally stable LV, reasonable coverage of LV borders, and good contrast between the borders and chamber. Attributes of low-quality frames included temporal instability of the LV and/or imaging artifacts (e.g., lack of contrast, haze, reverberation, and acoustic shadowing). Three different neural network architectures were investigated: 1) frame-level convolutional neural network (CNN) which operates on individual echo frames (VectorCNN); 2) single-stream sequence-level CNN which operates on a sequence of echo frames [VectorCNN + long short-term memory (LSTM)]; and 3) two-stream sequence-level CNNs which operate on a sequence of echo and optical flow frames (VectorCNN + LSTM + Average, VectorCNN + LSTM + MinMax, and VectorCNN + LSTM + ConvPool). Evaluation on a sequestered test dataset containing 76 DICOM cine loops with 16 914 frames showed that VectorCNN + LSTM can effectively utilize both spatial and temporal information to regress the quality of an input frame (accuracy: 0.925, sensitivity =0.860, and specificity =0.952), compared to the frame-level VectorCNN that only utilizes spatial information in that frame (accuracy: 0.903, sensitivity =0.791, and specificity =0.949). Furthermore, an independent sample t-test indicated that the cine loops classified to be of adequate quality by the VectorCNN + LSTM model had a statistically significant lower bias in the automatically estimated EF (mean bias $= -3.73$ % $\pm ~7.46$ %, versus a clinically obtained reference EF) compared to the loops classified as inadequate (mean bias $= -15.92$ % $\pm ~12.17$ %) ( ${p} = 0.007$ ). Thus, cine loop stratification using the proposed spatiotemporal CNN model improves the reliability of automated POC echocardiography image interpretation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于手持式护理点超声心动图的基于时空深度学习的动态环路质量滤波器
对护理点(POC)超声心动图扫描进行自动图像解读的可靠性取决于所获超声数据的质量。这项工作报告了时空深度学习模型的开发和验证情况,该模型用于评估使用手持式超声心动图设备采集的输入超声纤支循环是否适合自动量化算法处理(如射血分数估算)。我们使用手持式超声设备收集了两个地点的 POC 超声心动图(来自 175 名患者的 885 个 DICOM cine 循环),并对图像质量进行了帧级注释。用于左心室(LV)定量的高质量图像包括左心室时间稳定、左心室边界覆盖合理、边界与心腔对比度良好。低质量图像的特征包括左心室的时间不稳定性和/或成像伪影(如缺乏对比度、雾度、混响、声影)。研究了三种不同的神经网络架构--(a) 帧级卷积神经网络(CNN),对单个回声帧进行操作(VectorCNN)、(b) 在回声帧序列上运行的单流序列级 CNN(VectorCNN+LSTM)和 (c) 在回声和光流帧序列上运行的双流序列级 CNN(VectorCNN+LSTM+Average、VectorCNN+LSTM+MinMax 和 VectorCNN+LSTM+ConvPool)。在一个包含 76 个 DICOM 电影环路、16,914 个帧的封存测试数据集上进行的评估表明,VectorCNN+LSTM 可以有效地利用空间和时间信息来回归输入帧的质量(准确率:0.925,灵敏度 = 0.860,特异性 = 0.952),而帧级 VectorCNN 只利用了该帧的空间信息(准确率:0.903,灵敏度 = 0.791,特异性 = 0.949)。此外,独立样本 t 检验表明,被 VectorCNN+LSTM 模型归类为质量合格的环路与被归类为质量不合格的环路(平均偏差 = -15.92 ± 12.17 %)相比,自动估算的 EF 偏差显著降低(平均偏差 = - 3.73 ± 7.46 %,相对于临床获得的参考 EF)(p = 0.007)。因此,使用所提出的时空 CNN 模型进行纤支循环分层提高了自动护理点超声心动图图像解读的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1