Warfare Nerve Agents and Paraoxonase-1 as a Potential Prophylactic Therapy against Intoxication.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2024-01-01 DOI:10.2174/0109298665284293240409045359
A R Satvik Iyengar, Prakash Y Khandave, Janek Bzdrenga, Florian Nachon, Xavier Brazzolotto, Abhay H Pande
{"title":"Warfare Nerve Agents and Paraoxonase-1 as a Potential Prophylactic Therapy against Intoxication.","authors":"A R Satvik Iyengar, Prakash Y Khandave, Janek Bzdrenga, Florian Nachon, Xavier Brazzolotto, Abhay H Pande","doi":"10.2174/0109298665284293240409045359","DOIUrl":null,"url":null,"abstract":"<p><p>Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase- 1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase-1, with the time scale for the analysis of articles between 1960 to 2023. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that paraoxonase-1 has suitable properties for the development of efficient prophylaxis against NA poisoning.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":"345-355"},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665284293240409045359","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase- 1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase-1, with the time scale for the analysis of articles between 1960 to 2023. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that paraoxonase-1 has suitable properties for the development of efficient prophylaxis against NA poisoning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
战争神经毒剂和作为潜在预防性疗法的 Paraoxonase-1。
神经毒剂是化学战中使用的一类致命的神经毒性化学品。在这篇综述中,我们简要讨论了化学战的简史,随后探讨了神经毒剂的历史背景。文章探讨了这些制剂的分类、当代用途、毒性机制以及神经毒剂中毒现有治疗方案的缺点。然后,文章讨论了酶作为神经毒剂中毒预防剂的可能应用,概述了副氧合酶-1 的优点和缺点。最后,回顾了目前有关副氧杂蒽酮酶-1 的研究,强调了在实际领域使用副氧杂蒽酮酶-1 时需要应对的几个挑战,并需要评估其作为神经毒剂中毒预防性解毒剂的潜力。本手稿中使用的文献是通过PubMed、Google Scholar、Web of Science、Elsevier、Springer、ACS、Google Patent和书籍等多个电子数据库进行检索的,使用的关键词分别为化学战剂、丁酰胆碱酯酶、酶、神经毒剂、预防性、副氧自由基酶-1,分析文章的时间范围分别为1960年至2023年。研究表明,研究人员和机构必须齐心协力,开发针对NA中毒的有效对策,而PON1具有适合开发针对NA中毒的高效预防药物的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer's Disease. Honeybee Venom: A Potential Source of Anticancer Components. Comparative Analysis of IMT-P8 and LDP12 Cell-Penetrating Peptides in Increasing Immunostimulatory Properties of HIV-1 Nef-MPER-V3 Antigen. Aloperine Attenuates UVB-induced Damage in Skin Fibroblasts Via Activating TFE3/Beclin-1-Mediated Autophagy. Ferroptosis as a Therapeutic Target in Neurodegenerative Diseases: Exploring the Mechanisms and Potential of Treating Alzheimer's Disease and Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1