Biological Efficacy of Ionizing Radiation Sources on 3D Organotypic Tissue Slices Assessed by Fluorescence Microscopy.

IF 1.5 4区 医学 Q3 PHARMACOLOGY & PHARMACY Current radiopharmaceuticals Pub Date : 2024-04-30 DOI:10.2174/0118744710293570240419110322
Victoria Shestakova, Anna Smirnova, Anna Yakimova, Sergey Koryakin, Denis Baranovskii, Vyacheslav Saburov, Elena Yatsenko, Alexander Moiseev, Sergey Ivanov, Ekaterina Smirnova, Svetlana Belkina, Grigory Demyashkin, Lyudmila Komarova, Peter Shegay, Andrey Kaprin, Ilya Klabukov
{"title":"Biological Efficacy of Ionizing Radiation Sources on 3D Organotypic Tissue Slices Assessed by Fluorescence Microscopy.","authors":"Victoria Shestakova, Anna Smirnova, Anna Yakimova, Sergey Koryakin, Denis Baranovskii, Vyacheslav Saburov, Elena Yatsenko, Alexander Moiseev, Sergey Ivanov, Ekaterina Smirnova, Svetlana Belkina, Grigory Demyashkin, Lyudmila Komarova, Peter Shegay, Andrey Kaprin, Ilya Klabukov","doi":"10.2174/0118744710293570240419110322","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation.</p><p><strong>Methods: </strong>Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy.</p><p><strong>Results: </strong>Biological dosimetry is represented by differentially stained 200-µm thick organotypic tissue sections related to living and dead cells and cell metabolic activity.</p><p><strong>Conclusion: </strong>Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation in vitro on 3D organotypic tissue slices.</p>","PeriodicalId":10991,"journal":{"name":"Current radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118744710293570240419110322","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation.

Methods: Organotypic tissue slices were obtained by vibratome, and their mechanical properties were studied. Slices were exposed by two ionizing radiation sources; electron beams (80 Gy and 4 Gy), and soft gamma irradiation (80 Gy and 4 Gy). Two tissue culture protocols were used: the standard (37°C), and hypothermic (30°C) conditions. A qualitative analysis of cell viability in organotypic tissue slices was performed using fluorescent dyes and standard laser confocal microscopy.

Results: Biological dosimetry is represented by differentially stained 200-µm thick organotypic tissue sections related to living and dead cells and cell metabolic activity.

Conclusion: Our results underscore the ability of fluorescence laser scanning confocal microscopy to rapidly assess the radiobiological effects of ionizing radiation in vitro on 3D organotypic tissue slices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用荧光显微镜评估电离辐射源对三维有机组织切片的生物效应
目的:传统的基于细胞的放射生物学方法不足以评估电离辐射照射与细胞外基质微观结构有关的毒性。有机组织切片保留了在体内观察到的空间组织结构,使组织易于观察和染色。本研究旨在探索如何利用荧光显微镜观察生理兼容的三维组织培养物,以评估电离辐射的影响:方法:用振荡器获得有机组织切片,并研究其机械性能。切片受到两种电离辐射源的照射:电子束(80 Gy 和 4 Gy)和软伽马辐照(80 Gy 和 4 Gy)。使用了两种组织培养方案:标准(37°C)和低温(30°C)条件。使用荧光染料和标准激光共聚焦显微镜对有机组织切片中的细胞存活率进行了定性分析:结果:生物剂量测定体现在 200 微米厚的有机组织切片上,活细胞和死细胞以及细胞代谢活动受到不同程度的染色:我们的研究结果表明,荧光激光扫描共聚焦显微镜能够快速评估电离辐射对三维有机组织切片的体外放射生物学效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current radiopharmaceuticals
Current radiopharmaceuticals PHARMACOLOGY & PHARMACY-
CiteScore
3.20
自引率
4.30%
发文量
43
期刊最新文献
Enhancing Ketoprofen Solubility: A Strategic Approach Using Solid Dispersion and Response Surface Methodology. Preclinical Aspects of [89Zr]Zr-DFO-Rituximab: A High Potential Agent for Immuno-PET Imaging. Apigenin's Influence on Inflammatory and Epigenetic Responses in Rat Lungs After Radiotherapy. An Analysis of the Radiosensitiser Applications in the Biomedical Field. Left Ventricular Wall Motion as an Additional Valuable Parameter in Diabetic Patients with Normal Myocardial Perfusion Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1