{"title":"Neuromorphic computing spiking neural network edge detection model for content based image retrieval.","authors":"Ambuj, Rajendra Machavaram","doi":"10.1080/0954898X.2024.2348018","DOIUrl":null,"url":null,"abstract":"<p><p>In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2348018","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In contemporary times, content-based image retrieval (CBIR) techniques have gained widespread acceptance as a means for end-users to discern and extract specific image content from vast repositories. However, it is noteworthy that a substantial majority of CBIR studies continue to rely on linear methodologies such as gradient-based and derivative-based edge detection techniques. This research explores the integration of bioinspired Spiking Neural Network (SNN) based edge detection within CBIR. We introduce an innovative, computationally efficient SNN-based approach designed explicitly for CBIR applications, outperforming existing SNN models by reducing computational overhead by 2.5 times. The proposed SNN-based edge detection approach is seamlessly incorporated into three distinct CBIR techniques, each employing conventional edge detection methodologies including Sobel, Canny, and image derivatives. Rigorous experimentation and evaluations are carried out utilizing the Corel-10k dataset and crop weed dataset, a widely recognized and frequently adopted benchmark dataset in the realm of image analysis. Importantly, our findings underscore the enhanced performance of CBIR methodologies integrating the proposed SNN-based edge detection approach, with an average increase in mean precision values exceeding 3%. This study conclusively demonstrated the utility of our proposed methodology in optimizing feature extraction, thereby establishing its pivotal role in advancing edge centric CBIR approaches.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.