Pollutant transport model with large time-scale and estimation of land-use export coefficients at a watershed level.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-05-01 DOI:10.1002/wer.11031
Min Yang, Zemin Yang
{"title":"Pollutant transport model with large time-scale and estimation of land-use export coefficients at a watershed level.","authors":"Min Yang, Zemin Yang","doi":"10.1002/wer.11031","DOIUrl":null,"url":null,"abstract":"<p><p>The pollutant transport equilibrium in a watershed can be analyzed on a large time scale, and land-use export coefficients can be calculated directly under certain hydrologic and transport conditions, by ignoring hydrologic and transport processes at small space and time scales on hydrologic response units. In this study, the water environment system of a watershed was deconstructed into three parts (source, source-sink, and runoff transport) to construct a pollutant transportation equilibrium model on a large time scale. A watershed with an annual source-sink accumulation of zero was defined as a completely transported watershed; therefore, we derived a completely transported equilibrium equation. The problem of seeking the land export coefficient was converted into a problem of seeking the optimal solution of linear programming, which can be estimated according to the variation in pollutant output processes. The feasibility of the solution can be analyzed using multi-year stochastic rainfall processes. The model was used to analyze the transport equilibrium of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) upstream of the monitored cross-sections in a watershed, which covered 3145.66 km<sup>2</sup>. The land export coefficients were calculated according to the model. The model calculations indicated that the watershed was completely transported during perennial years. The calculated export coefficients of COD, TN, and TP for farmland, primary vegetation, and urban land were within the range of general empirical values. The calculated maximum accumulations of COD, TN, and TP were 0.19 × 10<sup>7</sup>, 0.063 × 10<sup>7</sup>, and 0.049 × 10<sup>6</sup> kg, respectively, for perennial rainfall. PRACTITIONER POINTS: A completely transported watershed was defined, and a model of pollutant transportation equilibrium with large time-scale was constructed. A problem of seeking the optimal solution of a linear programming was designed to estimate the land export coefficient of COD, TN, and TP. The runoff transport and accumulation processes of COD, TN, and TP in a watershed was analyzed.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11031","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pollutant transport equilibrium in a watershed can be analyzed on a large time scale, and land-use export coefficients can be calculated directly under certain hydrologic and transport conditions, by ignoring hydrologic and transport processes at small space and time scales on hydrologic response units. In this study, the water environment system of a watershed was deconstructed into three parts (source, source-sink, and runoff transport) to construct a pollutant transportation equilibrium model on a large time scale. A watershed with an annual source-sink accumulation of zero was defined as a completely transported watershed; therefore, we derived a completely transported equilibrium equation. The problem of seeking the land export coefficient was converted into a problem of seeking the optimal solution of linear programming, which can be estimated according to the variation in pollutant output processes. The feasibility of the solution can be analyzed using multi-year stochastic rainfall processes. The model was used to analyze the transport equilibrium of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) upstream of the monitored cross-sections in a watershed, which covered 3145.66 km2. The land export coefficients were calculated according to the model. The model calculations indicated that the watershed was completely transported during perennial years. The calculated export coefficients of COD, TN, and TP for farmland, primary vegetation, and urban land were within the range of general empirical values. The calculated maximum accumulations of COD, TN, and TP were 0.19 × 107, 0.063 × 107, and 0.049 × 106 kg, respectively, for perennial rainfall. PRACTITIONER POINTS: A completely transported watershed was defined, and a model of pollutant transportation equilibrium with large time-scale was constructed. A problem of seeking the optimal solution of a linear programming was designed to estimate the land export coefficient of COD, TN, and TP. The runoff transport and accumulation processes of COD, TN, and TP in a watershed was analyzed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有大时间尺度的污染物迁移模型和流域级土地利用出口系数估算。
通过忽略水文响应单元上小空间尺度和时间尺度上的水文和传输过程,可以在大时间尺度上分析流域内的污染物传输平衡,并在一定的水文和传输条件下直接计算土地利用输出系数。本研究将流域水环境系统解构为三个部分(源、源-汇、径流传输),构建了大时间尺度上的污染物传输平衡模型。源-汇年累积量为零的流域被定义为完全迁移流域,因此我们得出了完全迁移平衡方程。寻求土地输出系数的问题被转化为寻求线性规划最优解的问题,该最优解可根据污染物输出过程的变化进行估算。可利用多年随机降雨过程分析该方案的可行性。该模型用于分析某流域(面积为 3145.66 平方公里)监测断面上游化学需氧量(COD)、总氮(TN)和总磷(TP)的迁移平衡。根据模型计算了土地输出系数。模型计算结果表明,该流域在常年期间完全被迁移。计算得出的农田、原始植被和城市土地的 COD、TN 和 TP 输出系数均在一般经验值范围内。计算得出的常年降雨量下 COD、TN 和 TP 的最大累积量分别为 0.19 × 107、0.063 × 107 和 0.049 × 106 千克。实践点:定义了一个完全传输流域,并构建了一个大时间尺度的污染物传输平衡模型。设计了一个寻求线性规划最优解的问题,以估算 COD、TN 和 TP 的陆地输出系数。分析了 COD、TN 和 TP 在流域中的径流迁移和累积过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Study on the response mechanisms and evolution prediction of groundwater microbial-toxicological indicators. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. Understanding machine learning predictions of wastewater treatment plant sludge with explainable artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1